Iterated entropy derivatives and binary entropy inequalities

IF 0.9 3区 数学 Q2 MATHEMATICS
Tanay Wakhare
{"title":"Iterated entropy derivatives and binary entropy inequalities","authors":"Tanay Wakhare","doi":"10.1016/j.jat.2025.106143","DOIUrl":null,"url":null,"abstract":"<div><div>We embark on a systematic study of the <span><math><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-th derivative of <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>r</mi></mrow></msup><mi>H</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≔</mo><mo>−</mo><mi>x</mi><mo>log</mo><mi>x</mi><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mo>log</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is the binary entropy and <span><math><mrow><mi>k</mi><mo>≥</mo><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span> are integers. Our motivation is the conjectural entropy inequality <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>H</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span> is given by a functional equation. The <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> case was the key technical tool driving recent breakthroughs on the union-closed sets conjecture. We express <span><math><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>r</mi></mrow></msup><mi>H</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> as a rational function, an infinite series, and a sum over generalized Stirling numbers. This allows us to reduce the proof of the entropy inequality for real <span><math><mi>k</mi></math></span> to showing that an associated polynomial has only two real roots in the interval <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, which also allows us to prove the inequality for fractional exponents such as <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math></span>. The proof suggests a new framework for proving tight inequalities for the sum of polynomials times the logarithms of polynomials, which converts the inequality into a statement about the real roots of a simpler associated polynomial.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"307 ","pages":"Article 106143"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We embark on a systematic study of the (k+1)-th derivative of xkrH(xr), where H(x)xlogx(1x)log(1x) is the binary entropy and kr1 are integers. Our motivation is the conjectural entropy inequality αkH(xk)xk1H(x), where 0<αk<1 is given by a functional equation. The k=2 case was the key technical tool driving recent breakthroughs on the union-closed sets conjecture. We express dk+1dxk+1xkrH(xr) as a rational function, an infinite series, and a sum over generalized Stirling numbers. This allows us to reduce the proof of the entropy inequality for real k to showing that an associated polynomial has only two real roots in the interval (0,1), which also allows us to prove the inequality for fractional exponents such as k=3/2. The proof suggests a new framework for proving tight inequalities for the sum of polynomials times the logarithms of polynomials, which converts the inequality into a statement about the real roots of a simpler associated polynomial.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信