Franco S. Sobrero, Kevin Ahlgren, Michael G. Bevis, Demián D. Gómez, Jacob Heck, Arturo Echalar, Dana J. Caccamise, Eric Kendrick, Paola Montenegro, Ariele Batistti, Lizeth Contreras Choque, Juan Carlos Catari, Roger Tinta Sallico, Hernan Guerra Trigo
{"title":"A robust approach to terrestrial relative gravity measurements and adjustment of gravity networks","authors":"Franco S. Sobrero, Kevin Ahlgren, Michael G. Bevis, Demián D. Gómez, Jacob Heck, Arturo Echalar, Dana J. Caccamise, Eric Kendrick, Paola Montenegro, Ariele Batistti, Lizeth Contreras Choque, Juan Carlos Catari, Roger Tinta Sallico, Hernan Guerra Trigo","doi":"10.1007/s00190-024-01891-w","DOIUrl":"https://doi.org/10.1007/s00190-024-01891-w","url":null,"abstract":"<p>Like many geophysical observations, relative gravity (RG) measurements are affected by random errors, systematic errors, and occasional blunders. When RG measurements are used to build large gravity networks in remote areas under adverse environmental or logistical conditions (such as extreme temperatures, heavy precipitation, rugged terrain, difficult or dangerous roads, and high altitudes), it is more likely for significant errors to occur and accumulate. Therefore, obtaining accurate gravity estimates at regional gravity networks largely depends on defensive data collection protocols and robust adjustment techniques. In this work, we present a measurement field protocol based on highly redundant observation patterns, and a two-step least squares adjustment scheme implemented as a MATLAB package. This software helps us identify blunders, mitigates the impact of random errors, and downweights or removes outlier observations. The methodology also guarantees that adjusted gravity values have well-constrained standard error estimates. We illustrate the capabilities of our approach through the case study of the Bolivian gravity network, where we determined the acceleration due to gravity at 2548 stations that spread over difficult and sometimes extreme environments, with a typical level of uncertainty of 0.10–0.15 mGal.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"30 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Weigelt, Adrian Jäggi, Ulrich Meyer, Daniel Arnold, Torsten Mayer-Gürr, Felix Öhlinger, Krzysztof Sośnica, Sahar Ebadi, Steffen Schön, Holger Steffen
{"title":"Bridging the gap between GRACE and GRACE Follow-On by combining high–low satellite-to-satellite tracking data and satellite laser ranging","authors":"Matthias Weigelt, Adrian Jäggi, Ulrich Meyer, Daniel Arnold, Torsten Mayer-Gürr, Felix Öhlinger, Krzysztof Sośnica, Sahar Ebadi, Steffen Schön, Holger Steffen","doi":"10.1007/s00190-024-01888-5","DOIUrl":"https://doi.org/10.1007/s00190-024-01888-5","url":null,"abstract":"<p>The satellite missions GRACE and GRACE Follow-On have undoubtedly been the most important sources to observe mass transport on global scales. Within the Combination Service for Time-Variable Gravity Fields (COST-G), gravity field solutions from various processing centers are being combined to improve the signal-to-noise ratio and further increase the spatial resolution. The time series of monthly gravity field solutions suffer from a data gap of about one year between the two missions GRACE and GRACE Follow-On among several smaller data gaps. We present an intermediate technique bridging the gap between the two missions allowing (1) for a continued and uninterrupted time series of mass observations and (2) to compare, cross-validate and link the two time series. We focus on the combination of high-low satellite-to-satellite tracking (HL-SST) of low-Earth orbiting satellites by GPS in combination with satellite laser ranging (SLR), where SLR contributes to the very low degrees and HL-SST is able to provide the higher spatial resolution at an lower overall precision compared to GRACE-like solutions. We present a complete series covering the period from 2003 to 2022 filling the gaps of GRACE and between the missions. The achieved spatial resolution is approximately 700 km at a monthly temporal resolutions throughout the time period of interest. For the purpose of demonstrating possible applications, we estimate the low degree glacial isostatic adjustment signal in Fennoscandia and North America. In both cases, the location, the signal strength and extend of the signal coincide well with GRACE/GRACE-FO solutions achieving 99.5% and 86.5% correlation, respectively.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"231 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The ambiguity-resolved detector: a detector for the mixed-integer GNSS model","authors":"P. J. G. Teunissen","doi":"10.1007/s00190-024-01885-8","DOIUrl":"https://doi.org/10.1007/s00190-024-01885-8","url":null,"abstract":"<p>In this contribution, we introduce the ambiguity-resolved (AR) detector and study its distributional characteristics. The AR-detector is a new detector that lies in between the commonly used ambiguity-float (AF) and ambiguity-known (AK) detectors. As the ambiguity vector can seldomly be known completely, usage of the AK-detector is questionable as reliance on its distributional properties will then generally be incorrect. The AR-detector resolves the shortcomings of the AK-detector by treating the ambiguities as unknown integers. We show how the detector improves upon the AF-detector, and we demonstrate that the, for ambiguity-resolved parameter estimation, commonly required extreme success rates can be relaxed for detection, thus showing that improved model validation is also possible with smaller success rates. As such, the AR-detector is designed to work for mixed-integer GNSS models.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"7 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. J. Wu, P. Guo, X. Ma, J. C. Xue, M. Liu, X. G. Hu
{"title":"Differences among the total electron content derived by radio occultation, global ionospheric maps and satellite altimetry","authors":"M. J. Wu, P. Guo, X. Ma, J. C. Xue, M. Liu, X. G. Hu","doi":"10.1007/s00190-024-01893-8","DOIUrl":"https://doi.org/10.1007/s00190-024-01893-8","url":null,"abstract":"<p>In recent years, significant progress has been in ionospheric modeling research through data ingestion and data assimilation from a variety of sources, including ground-based global navigation satellite systems, space-based radio occultation and satellite altimetry (SA). Given the diverse observing geometries, vertical data coverages and intermission biases among different measurements, it is imperative to evaluate their absolute accuracies and estimate systematic biases to determine reasonable weights and error covariances when constructing ionospheric models. This study specifically investigates the disparities among the vertical total electron content (VTEC) derived from SA data of the Jason and Sentinel missions, the integrated VTEC from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) and global ionospheric maps (GIMs). To mitigate the systematic bias resulting from differences in satellite altitudes, the vertical ranges of various VTECs are mapped to a standardized height. The results indicate that the intermission bias of SA-derived VTEC remains relatively stable, with Jason-1 serving as a benchmark for mapping other datasets. The mean bias between COSMIC and SA-derived VTEC is minimal, suggesting good agreement between these two space-based techniques. However, COSMIC and GIM VTEC exhibit remarkable seasonal discrepancies, influenced by the solar activity variations. Moreover, GIMs demonstrate noticeable hemispheric asymmetry and a degradation in accuracy ranging from 0.7 to 1.7 TECU in the ocean-dominant Southern Hemisphere. While space-based observations effectively illustrate phenomena such as the Weddell Sea anomaly and longitudinal ionospheric characteristics, GIMs tend to exhibit a more pronounced mid-latitude electron density enhancement structure.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"9 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Turbulent atmospheric phase correction for SBAS-InSAR","authors":"Meng Duan, Zhiwei Li, Bing Xu, Weiping Jiang, Yunmeng Cao, Ying Xiong, Jianchao Wei","doi":"10.1007/s00190-024-01892-9","DOIUrl":"https://doi.org/10.1007/s00190-024-01892-9","url":null,"abstract":"<p>The atmospheric phase, which is the sum of vertical stratification and turbulent atmospheric phase, is a major challenge currently faced by small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) measurements. Many previous studies have demonstrated that the former can be separated from the interferogram by establishing a functional model between it and the topography. Due to the high variability of the turbulent atmospheric phase (TAP) in the space and time domains, however, the TAP is difficult to model and remove. Recently, many stochastic models have been developed to reduce the influence of the TAP in SBAS-InSAR. To avoid the rank deficient in stochastic model method, we present a correction method using network-based variance estimation, interferogram stacking and ordinary kriging interpolation (NIO). There are three main steps in the proposed algorithm to ensure the accuracy of the correction result: (1) adaptively identify and select sufficient good-quality interferograms that contain less turbulent atmospheric noise to participate in deformation calculation; (2) further select the short temporal baseline interferogram and mask the corresponding deformation location to avoid the effect of deformation; and 3) take advantage of ordinary kriging interpolation to reduce the effects of TAP from the selected good-quality interferograms. The performance of the proposed method has been validated with a set of simulations and real Sentinel-1A SAR data in Southern California, USA.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"18 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiya Pan, Fan Gao, Jinliang Wang, Jianpeng Zhang, Qianwei Liu, Yuncheng Deng
{"title":"A main direction-based noise removal algorithm for ICESat-2 photon-counting LiDAR data","authors":"Jiya Pan, Fan Gao, Jinliang Wang, Jianpeng Zhang, Qianwei Liu, Yuncheng Deng","doi":"10.1007/s00190-024-01887-6","DOIUrl":"https://doi.org/10.1007/s00190-024-01887-6","url":null,"abstract":"<p>A new generation of space-borne LiDAR (Light Detection And Ranging) satellite ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) equipped with ATLAS (Advanced Topographic Laser Altimeter System) can perform earth observation. The main problem is to remove the noise photons from the data. The study proposes a main direction-based noise removal algorithm based on three sets of photon-counting LiDAR data. In order to extract the main direction, features in the spatial neighborhood (<i>k</i>) of photons are calculated, most of the initial noise is removed according to the angle between the main direction of photons and the along-track distance direction. Qualitative and quantitative evaluations are employed to validate the proposed algorithm. The obtained results and the performed analysis reveal that the proposed algorithm can process day and night data with different signal-to-noise ratios, while the accuracy of various surface types exceeds 96%. More specifically, the accuracy of the proposed algorithm for night data can reach 97.43%. Based on quantitative evaluations using SPL (Single photon LiDAR), MATLAS, and airborne LiDAR data, the average <i>R</i>, <i>P</i>, and <i>F</i> values are 0.951, 0.959, and 0.954, respectively. Meanwhile, the result of the proposed algorithm is compatible with the ATL03 photons with low, medium, and high confidence, and its accuracy is superior to ATL08 products. The proposed algorithm had fewer parameters and significantly outperformed the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the improved local statistical distance algorithm. This algorithm is expected to provide a reference for subsequent photon-counting LiDAR data processing.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"19 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling random isotropic vector fields on the sphere: theory and application to the noise in GNSS station position time series","authors":"Paul Rebischung, Kevin Gobron","doi":"10.1007/s00190-024-01886-7","DOIUrl":"https://doi.org/10.1007/s00190-024-01886-7","url":null,"abstract":"<p>While the theory of random isotropic scalar fields on the sphere is well established, it has not been fully extended to the case of vector fields yet. In this contribution, several theoretical results are thus generalized to random isotropic vector fields on the sphere, including an equivalent of the Wiener–Khinchin theorem, which relates the distance-dependent covariance of the field’s components in a particular rotationally invariant basis to the covariance of the vector spherical harmonic coefficients of the field, i.e., its angular power spectrum. A parametric model, based on a stochastic partial differential equation, is proposed to represent the spatial covariance and angular power spectrum of such fields. Such a model is adjusted, with minor modifications, to empirical spatial correlations of the white noise and flicker noise components of 3D displacement time series of ground global navigation satellite system (GNSS) tracking stations. The obtained spatial correlation model may find several applications such as enhanced detection of offsets in GNSS station position time series, enhanced estimation of long-term ground deformation (i.e., station velocities), enhanced isolation of station-specific displacements (i.e., spatial filtering) and more realistic assessment of uncertainties in all GNSS network-based applications (e.g., estimation of crustal strain rates, of glacial isostatic adjustment models or of tectonic plate motion models).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Rebischung, Zuheir Altamimi, Xavier Collilieux, Laurent Métivier, Kristel Chanard
{"title":"ITRF2020 seasonal geocenter motion model","authors":"Paul Rebischung, Zuheir Altamimi, Xavier Collilieux, Laurent Métivier, Kristel Chanard","doi":"10.1007/s00190-024-01889-4","DOIUrl":"https://doi.org/10.1007/s00190-024-01889-4","url":null,"abstract":"<p>Precise knowledge of geocenter motion, i.e., the relative motion between the Earth’s center of mass (CM) and the center of figure of the Earth’s surface (CF), is crucial to high-stakes geodetic applications such as sea-level rise monitoring with satellite altimetry or the establishment of regional and global mass budgets with satellite gravimetry. The computation of the latest release of the International Terrestrial Reference Frame, ITRF2020, involved the estimation of a field of seasonal motions for a global network of geodetic stations, expressed with respect to CM, as sensed by satellite laser ranging, from which the translational part represents seasonal geocenter motion. This paper presents two different methods to isolate seasonal geocenter motion from the field of ITRF2020 seasonal station motions, among which a new method based on a direct weighted average of seasonal station motions, with station-specific weights chosen so as to provide a better approximation of CF than the standard network shift approach. The ITRF2020 annual geocenter motion model thus obtained is then compared with other recent geodetic and geophysical estimates. Although different sub-groups of estimates with relatively good internal consistency may be identified, the overall scatter of recent geodetic estimates remains at the level of several mm, i.e., close to the amplitude of annual geocenter motion itself. Efforts toward reconciling seasonal geocenter motion estimates therefore still appear necessary. Meanwhile, it would seem safe to assume that seasonal geocenter motion models, in particular those currently used in satellite altimetry and satellite gravimetry, are still uncertain.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"13 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orbit design for a future geodetic satellite and gravity field recovery","authors":"Krzysztof Sośnica","doi":"10.1007/s00190-024-01884-9","DOIUrl":"https://doi.org/10.1007/s00190-024-01884-9","url":null,"abstract":"<p>Spherical geodetic satellites tracked by satellite laser ranging (SLR) stations provide indispensable scientific products that cannot be replaced by other sources. For studying the time-variable gravity field, two low-degree coefficients <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub> derived from GRACE and GRACE Follow-On missions are replaced by the values derived from SLR tracking of geodetic satellites, such as LAGEOS-1/2, LARES-1/2, Starlette, Stella, and Ajisai. The subset of these satellites is used to derive the geocenter motion which is fundamental in the realization of the origin of the terrestrial reference frames. LAGEOS satellites provide the most accurate standard gravitational product GM of the Earth. In this study, we use the Kaula theorem of gravitational perturbations to find the best possible satellite height, inclination, and eccentricity for a future geodetic satellite to maximize orbit sensitivity in terms of the recovery of low-degree gravity field coefficients, geocenter, and GM. We also derive the common station-satellite visibility-coverability coefficient as a function of the inclination angle and satellite height. We found that the best inclination for a future geodetic satellite is 35°–45° or 135°–145° with a height of about 1500–1700 km to support future GRACE/MAGIC missions with <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub>. For a better geocenter recovery and derivation of the standard gravitational product, the preferable height is 2300–3500 km. Unfortunately, none of the existing geodetic satellites has the optimum height and inclination angle for deriving GM, geocenter, and <i>C</i><sub>20</sub> because there are no spherical geodetic satellites at the heights between 1500 (Ajisai and LARES-1) and 5800 km (LAGEOS-1/2, LARES-2).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"88 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}