M. J. Wu, P. Guo, X. Ma, J. C. Xue, M. Liu, X. G. Hu
{"title":"Differences among the total electron content derived by radio occultation, global ionospheric maps and satellite altimetry","authors":"M. J. Wu, P. Guo, X. Ma, J. C. Xue, M. Liu, X. G. Hu","doi":"10.1007/s00190-024-01893-8","DOIUrl":"https://doi.org/10.1007/s00190-024-01893-8","url":null,"abstract":"<p>In recent years, significant progress has been in ionospheric modeling research through data ingestion and data assimilation from a variety of sources, including ground-based global navigation satellite systems, space-based radio occultation and satellite altimetry (SA). Given the diverse observing geometries, vertical data coverages and intermission biases among different measurements, it is imperative to evaluate their absolute accuracies and estimate systematic biases to determine reasonable weights and error covariances when constructing ionospheric models. This study specifically investigates the disparities among the vertical total electron content (VTEC) derived from SA data of the Jason and Sentinel missions, the integrated VTEC from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) and global ionospheric maps (GIMs). To mitigate the systematic bias resulting from differences in satellite altitudes, the vertical ranges of various VTECs are mapped to a standardized height. The results indicate that the intermission bias of SA-derived VTEC remains relatively stable, with Jason-1 serving as a benchmark for mapping other datasets. The mean bias between COSMIC and SA-derived VTEC is minimal, suggesting good agreement between these two space-based techniques. However, COSMIC and GIM VTEC exhibit remarkable seasonal discrepancies, influenced by the solar activity variations. Moreover, GIMs demonstrate noticeable hemispheric asymmetry and a degradation in accuracy ranging from 0.7 to 1.7 TECU in the ocean-dominant Southern Hemisphere. While space-based observations effectively illustrate phenomena such as the Weddell Sea anomaly and longitudinal ionospheric characteristics, GIMs tend to exhibit a more pronounced mid-latitude electron density enhancement structure.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"9 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Turbulent atmospheric phase correction for SBAS-InSAR","authors":"Meng Duan, Zhiwei Li, Bing Xu, Weiping Jiang, Yunmeng Cao, Ying Xiong, Jianchao Wei","doi":"10.1007/s00190-024-01892-9","DOIUrl":"https://doi.org/10.1007/s00190-024-01892-9","url":null,"abstract":"<p>The atmospheric phase, which is the sum of vertical stratification and turbulent atmospheric phase, is a major challenge currently faced by small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) measurements. Many previous studies have demonstrated that the former can be separated from the interferogram by establishing a functional model between it and the topography. Due to the high variability of the turbulent atmospheric phase (TAP) in the space and time domains, however, the TAP is difficult to model and remove. Recently, many stochastic models have been developed to reduce the influence of the TAP in SBAS-InSAR. To avoid the rank deficient in stochastic model method, we present a correction method using network-based variance estimation, interferogram stacking and ordinary kriging interpolation (NIO). There are three main steps in the proposed algorithm to ensure the accuracy of the correction result: (1) adaptively identify and select sufficient good-quality interferograms that contain less turbulent atmospheric noise to participate in deformation calculation; (2) further select the short temporal baseline interferogram and mask the corresponding deformation location to avoid the effect of deformation; and 3) take advantage of ordinary kriging interpolation to reduce the effects of TAP from the selected good-quality interferograms. The performance of the proposed method has been validated with a set of simulations and real Sentinel-1A SAR data in Southern California, USA.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"18 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiya Pan, Fan Gao, Jinliang Wang, Jianpeng Zhang, Qianwei Liu, Yuncheng Deng
{"title":"A main direction-based noise removal algorithm for ICESat-2 photon-counting LiDAR data","authors":"Jiya Pan, Fan Gao, Jinliang Wang, Jianpeng Zhang, Qianwei Liu, Yuncheng Deng","doi":"10.1007/s00190-024-01887-6","DOIUrl":"https://doi.org/10.1007/s00190-024-01887-6","url":null,"abstract":"<p>A new generation of space-borne LiDAR (Light Detection And Ranging) satellite ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) equipped with ATLAS (Advanced Topographic Laser Altimeter System) can perform earth observation. The main problem is to remove the noise photons from the data. The study proposes a main direction-based noise removal algorithm based on three sets of photon-counting LiDAR data. In order to extract the main direction, features in the spatial neighborhood (<i>k</i>) of photons are calculated, most of the initial noise is removed according to the angle between the main direction of photons and the along-track distance direction. Qualitative and quantitative evaluations are employed to validate the proposed algorithm. The obtained results and the performed analysis reveal that the proposed algorithm can process day and night data with different signal-to-noise ratios, while the accuracy of various surface types exceeds 96%. More specifically, the accuracy of the proposed algorithm for night data can reach 97.43%. Based on quantitative evaluations using SPL (Single photon LiDAR), MATLAS, and airborne LiDAR data, the average <i>R</i>, <i>P</i>, and <i>F</i> values are 0.951, 0.959, and 0.954, respectively. Meanwhile, the result of the proposed algorithm is compatible with the ATL03 photons with low, medium, and high confidence, and its accuracy is superior to ATL08 products. The proposed algorithm had fewer parameters and significantly outperformed the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the improved local statistical distance algorithm. This algorithm is expected to provide a reference for subsequent photon-counting LiDAR data processing.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"19 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling random isotropic vector fields on the sphere: theory and application to the noise in GNSS station position time series","authors":"Paul Rebischung, Kevin Gobron","doi":"10.1007/s00190-024-01886-7","DOIUrl":"https://doi.org/10.1007/s00190-024-01886-7","url":null,"abstract":"<p>While the theory of random isotropic scalar fields on the sphere is well established, it has not been fully extended to the case of vector fields yet. In this contribution, several theoretical results are thus generalized to random isotropic vector fields on the sphere, including an equivalent of the Wiener–Khinchin theorem, which relates the distance-dependent covariance of the field’s components in a particular rotationally invariant basis to the covariance of the vector spherical harmonic coefficients of the field, i.e., its angular power spectrum. A parametric model, based on a stochastic partial differential equation, is proposed to represent the spatial covariance and angular power spectrum of such fields. Such a model is adjusted, with minor modifications, to empirical spatial correlations of the white noise and flicker noise components of 3D displacement time series of ground global navigation satellite system (GNSS) tracking stations. The obtained spatial correlation model may find several applications such as enhanced detection of offsets in GNSS station position time series, enhanced estimation of long-term ground deformation (i.e., station velocities), enhanced isolation of station-specific displacements (i.e., spatial filtering) and more realistic assessment of uncertainties in all GNSS network-based applications (e.g., estimation of crustal strain rates, of glacial isostatic adjustment models or of tectonic plate motion models).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Rebischung, Zuheir Altamimi, Xavier Collilieux, Laurent Métivier, Kristel Chanard
{"title":"ITRF2020 seasonal geocenter motion model","authors":"Paul Rebischung, Zuheir Altamimi, Xavier Collilieux, Laurent Métivier, Kristel Chanard","doi":"10.1007/s00190-024-01889-4","DOIUrl":"https://doi.org/10.1007/s00190-024-01889-4","url":null,"abstract":"<p>Precise knowledge of geocenter motion, i.e., the relative motion between the Earth’s center of mass (CM) and the center of figure of the Earth’s surface (CF), is crucial to high-stakes geodetic applications such as sea-level rise monitoring with satellite altimetry or the establishment of regional and global mass budgets with satellite gravimetry. The computation of the latest release of the International Terrestrial Reference Frame, ITRF2020, involved the estimation of a field of seasonal motions for a global network of geodetic stations, expressed with respect to CM, as sensed by satellite laser ranging, from which the translational part represents seasonal geocenter motion. This paper presents two different methods to isolate seasonal geocenter motion from the field of ITRF2020 seasonal station motions, among which a new method based on a direct weighted average of seasonal station motions, with station-specific weights chosen so as to provide a better approximation of CF than the standard network shift approach. The ITRF2020 annual geocenter motion model thus obtained is then compared with other recent geodetic and geophysical estimates. Although different sub-groups of estimates with relatively good internal consistency may be identified, the overall scatter of recent geodetic estimates remains at the level of several mm, i.e., close to the amplitude of annual geocenter motion itself. Efforts toward reconciling seasonal geocenter motion estimates therefore still appear necessary. Meanwhile, it would seem safe to assume that seasonal geocenter motion models, in particular those currently used in satellite altimetry and satellite gravimetry, are still uncertain.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"13 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orbit design for a future geodetic satellite and gravity field recovery","authors":"Krzysztof Sośnica","doi":"10.1007/s00190-024-01884-9","DOIUrl":"https://doi.org/10.1007/s00190-024-01884-9","url":null,"abstract":"<p>Spherical geodetic satellites tracked by satellite laser ranging (SLR) stations provide indispensable scientific products that cannot be replaced by other sources. For studying the time-variable gravity field, two low-degree coefficients <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub> derived from GRACE and GRACE Follow-On missions are replaced by the values derived from SLR tracking of geodetic satellites, such as LAGEOS-1/2, LARES-1/2, Starlette, Stella, and Ajisai. The subset of these satellites is used to derive the geocenter motion which is fundamental in the realization of the origin of the terrestrial reference frames. LAGEOS satellites provide the most accurate standard gravitational product GM of the Earth. In this study, we use the Kaula theorem of gravitational perturbations to find the best possible satellite height, inclination, and eccentricity for a future geodetic satellite to maximize orbit sensitivity in terms of the recovery of low-degree gravity field coefficients, geocenter, and GM. We also derive the common station-satellite visibility-coverability coefficient as a function of the inclination angle and satellite height. We found that the best inclination for a future geodetic satellite is 35°–45° or 135°–145° with a height of about 1500–1700 km to support future GRACE/MAGIC missions with <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub>. For a better geocenter recovery and derivation of the standard gravitational product, the preferable height is 2300–3500 km. Unfortunately, none of the existing geodetic satellites has the optimum height and inclination angle for deriving GM, geocenter, and <i>C</i><sub>20</sub> because there are no spherical geodetic satellites at the heights between 1500 (Ajisai and LARES-1) and 5800 km (LAGEOS-1/2, LARES-2).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"88 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward a unified approach to the total least-squares adjustment","authors":"Yu Hu, Xing Fang, Wenxian Zeng","doi":"10.1007/s00190-024-01882-x","DOIUrl":"https://doi.org/10.1007/s00190-024-01882-x","url":null,"abstract":"<p>In this paper, we analyze the general errors-in-variables (EIV) model, allowing both the uncertain coefficient matrix and the dispersion matrix to be rank-deficient. We derive the weighted total least-squares (WTLS) solution in the general case and find that with the model consistency condition: (1) If the coefficient matrix is of full column rank, the parameter vector and the residual vector can be uniquely determined independently of the singularity of the dispersion matrix, which naturally extends the Neitzel/Schaffrin rank condition (NSC) in previous work. (2) In the rank-deficient case, the estimable functions and the residual vector can be uniquely determined. As a result, a unified approach for WTLS is provided by using generalized inverse matrices (g-inverses) as a principal tool. This method is unified because it fully considers the generality of the model setup, such as singularity of the dispersion matrix and multicollinearity of the coefficient matrix. It is flexible because it does not require to distinguish different cases before the adjustment. We analyze two examples, including the adjustment of the translation elimination model, where the centralized coordinates for the symmetric transformation are applied, and the unified adjustment, where the higher-dimensional transformation model is explicitly compatible with the lower-dimensional transformation problem.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"21 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Properties of an optical event timer for satellite laser ranging","authors":"Jan Kodet, Johann J. Eckl, K. Ulrich Schreiber","doi":"10.1007/s00190-024-01876-9","DOIUrl":"https://doi.org/10.1007/s00190-024-01876-9","url":null,"abstract":"<p>The resolution and above all the stability of the geodetic reference frames is crucially important when global change, such as the sea level rise is observed. In this context systematic errors are still presenting a significant challenge to the measurement techniques of space geodesy. In order to overcome this unfortunate situation for the satellite laser ranging technique, we have utilized the injection of a mode-locked laser to provide a stable low-noise link between the optical domain, where the measurements are carried out, and the microwave regime in which the station clock is defined. We obtained a considerably enhanced measurement delay stability by 10–20 ps over several days, albeit with some experimental challenges. The implementation of waveform scans required us to revisit the issue of target structure and intensity variation in satellite laser ranging.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"81 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiang Zuo, Pan Li, Bobin Cui, Maorong Ge, Harald Schuh
{"title":"A computational efficient approach for multi-GNSS real-time precise clock estimation with undifferenced ambiguity resolution","authors":"Xiang Zuo, Pan Li, Bobin Cui, Maorong Ge, Harald Schuh","doi":"10.1007/s00190-024-01881-y","DOIUrl":"https://doi.org/10.1007/s00190-024-01881-y","url":null,"abstract":"<p>To support real-time global navigation satellite systems (GNSS) precise applications, satellite clock corrections need to be precisely estimated at a high-rate update interval, which remains a challenge due to the rapid development of multi-GNSS constellations. In this study, we developed an undifferenced (UD) ambiguity resolution (AR) procedure to improve both the accuracy and computational efficiency for real-time multi-GNSS clock estimation realized by a square root information filter. In the proposed method, UD ambiguities are resolved after correcting the simultaneously estimated uncalibrated phase delays (UPD) and the fixed UD ambiguity parameters are eliminated immediately from the filter, so that the computational burden is significantly reduced. Moreover, based on the linear relationship between double-differenced (DD) and UD ambiguities, we investigated the difference between DD and UD AR in clock estimation. We found that the major reason why DD AR contributes little to the clock estimation while UD AR can speed up the convergence remarkably is that UD AR additionally provides a stable clock datum compared with DD AR. GNSS observations from about 100 globally distributed stations were processed with the proposed method to generate simulated real-time clocks and UPDs for GPS, Galileo, and BDS satellites over a one-month period. The results show that the percentage of wide-lane (WL) UPD residuals within ± 0.25 cycles and narrow-lane (NL) UPD residuals within ± 0.15 cycles are over 97.0% and 90.0%, respectively, which contributes to an ambiguity fixing rate of more than 90% for three systems. The mean daily standard deviation (STD) of the clocks of the UD-fixed solution with respect to Center for Orbit Determination in Europe 30 s final products is 0.021, 0.020, and 0.035 ns for GPS, Galileo, and BDS satellite, respectively, which is improved by 78.1%, 58.3%, and 79.8% compared to the float solution. Benefiting from the removal of fixed ambiguities, the average computation time per epoch was reduced from 3.88 to 1.05 s with a remarkable improvement of 72.9%. The quality of the satellite clock and UPD products was also evaluated by the performance of kinematic precise point positioning (PPP). The results show that fast and reliable multi-GNSS PPP-AR can be achieved with the derived UD-fixed clocks and UPDs, which outperforms that using DD-fixed clock and off-line UPD products with an average improvement of 7.9% and 19.9% in terms of convergence time and positioning accuracy, respectively. Furthermore, we demonstrated the effectiveness of the proposed UD AR method through a 7-day real-time clock estimation experiment.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"55 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}