利用克里格法进行全球三维电离层形状函数建模

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Haixia Lyu, Manuel Hernández-Pajares, Min Li, Enric Monte-Moreno, Fabricio S. Prol, Hongping Zhang, Chenlong Deng, Jingnan Liu
{"title":"利用克里格法进行全球三维电离层形状函数建模","authors":"Haixia Lyu, Manuel Hernández-Pajares, Min Li, Enric Monte-Moreno, Fabricio S. Prol, Hongping Zhang, Chenlong Deng, Jingnan Liu","doi":"10.1007/s00190-024-01908-4","DOIUrl":null,"url":null,"abstract":"<p>The 3D ionosphere structure is of interest in many fields such as radio frequency communication and global navigation satellite system (GNSS) applications. However, the limited temporal and spatial coverage of measurements poses a challenge for 3D electron density modeling. To overcome this challenge, we explore the use of kriging interpolation technique. The kriging interpolation is performed to obtain 3D representation of the ionosphere over electron density measurements retrieved by GNSS radio-occultation (RO) data. RO measurements are first reduced to “shape function,” the ratio of electron density to vertical total electron content (VTEC), aiming to create a background model. Then, the empirical residual semivariogram is analyzed for variation characteristics of the shape functions under different solar geomagnetic conditions. Finally, 3D kriging is adopted for shape function interpolation. Compared to the modeling results without kriging, the maximum root mean square error (RMSE) reduction reaches <span>\\(3.4\\times {10}^{-4}~\\text {km}^{-1}\\)</span>, which amounts to <span>\\(3.4\\times {10}^{11}~\\text {el/m}^{3}\\)</span> of electron density when VTEC is assumed as 100 TECU. This improvement accounts for 17.8% of root mean square (RMS) of shape function.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"128 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global 3D ionospheric shape function modeling with kriging\",\"authors\":\"Haixia Lyu, Manuel Hernández-Pajares, Min Li, Enric Monte-Moreno, Fabricio S. Prol, Hongping Zhang, Chenlong Deng, Jingnan Liu\",\"doi\":\"10.1007/s00190-024-01908-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The 3D ionosphere structure is of interest in many fields such as radio frequency communication and global navigation satellite system (GNSS) applications. However, the limited temporal and spatial coverage of measurements poses a challenge for 3D electron density modeling. To overcome this challenge, we explore the use of kriging interpolation technique. The kriging interpolation is performed to obtain 3D representation of the ionosphere over electron density measurements retrieved by GNSS radio-occultation (RO) data. RO measurements are first reduced to “shape function,” the ratio of electron density to vertical total electron content (VTEC), aiming to create a background model. Then, the empirical residual semivariogram is analyzed for variation characteristics of the shape functions under different solar geomagnetic conditions. Finally, 3D kriging is adopted for shape function interpolation. Compared to the modeling results without kriging, the maximum root mean square error (RMSE) reduction reaches <span>\\\\(3.4\\\\times {10}^{-4}~\\\\text {km}^{-1}\\\\)</span>, which amounts to <span>\\\\(3.4\\\\times {10}^{11}~\\\\text {el/m}^{3}\\\\)</span> of electron density when VTEC is assumed as 100 TECU. This improvement accounts for 17.8% of root mean square (RMS) of shape function.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01908-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01908-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

三维电离层结构在射频通信和全球导航卫星系统(GNSS)应用等许多领域都很有意义。然而,测量的时间和空间覆盖范围有限,给三维电子密度建模带来了挑战。为了克服这一挑战,我们探索使用克里金插值技术。通过克里金插值技术,可以在全球导航卫星系统无线电占星(RO)数据获取的电子密度测量值上获得电离层的三维表示。RO 测量值首先被简化为 "形状函数",即电子密度与垂直电子总含量(VTEC)之比,目的是创建一个背景模型。然后,利用经验残差半变量图分析形状函数在不同太阳地磁条件下的变化特征。最后,采用三维克里金法进行形状函数插值。与不采用克里格法的建模结果相比,当假定VTEC为100 TECU时,电子密度的最大均方根误差(RMSE)降低了(3.4倍{10}^{-4}~text {km}^{-1}}),相当于(3.4倍{10}^{11}~text {el/m}^{3})。这一改进占形状函数均方根(RMS)的 17.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global 3D ionospheric shape function modeling with kriging

The 3D ionosphere structure is of interest in many fields such as radio frequency communication and global navigation satellite system (GNSS) applications. However, the limited temporal and spatial coverage of measurements poses a challenge for 3D electron density modeling. To overcome this challenge, we explore the use of kriging interpolation technique. The kriging interpolation is performed to obtain 3D representation of the ionosphere over electron density measurements retrieved by GNSS radio-occultation (RO) data. RO measurements are first reduced to “shape function,” the ratio of electron density to vertical total electron content (VTEC), aiming to create a background model. Then, the empirical residual semivariogram is analyzed for variation characteristics of the shape functions under different solar geomagnetic conditions. Finally, 3D kriging is adopted for shape function interpolation. Compared to the modeling results without kriging, the maximum root mean square error (RMSE) reduction reaches \(3.4\times {10}^{-4}~\text {km}^{-1}\), which amounts to \(3.4\times {10}^{11}~\text {el/m}^{3}\) of electron density when VTEC is assumed as 100 TECU. This improvement accounts for 17.8% of root mean square (RMS) of shape function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信