Spherical radial basis functions model: approximating an integral functional of an isotropic Gaussian random field

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Guobin Chang, Xun Zhang, Haipeng Yu
{"title":"Spherical radial basis functions model: approximating an integral functional of an isotropic Gaussian random field","authors":"Guobin Chang, Xun Zhang, Haipeng Yu","doi":"10.1007/s00190-024-01910-w","DOIUrl":null,"url":null,"abstract":"<p>The spherical radial basis function (SRBF) approach, widely used in gravity modeling, is theoretically surveyed from a viewpoint of random field theory. Let the gravity potential be a random field which is represented as an integral functional of another random field, namely an isotropic Gaussian random field (IGRF) on a sphere inside the Bjerhammar sphere with the SRBF as the integral kernel. When the integration is approximated by a discrete sum within a local region, one gets the widely applicable SRBF model. With this theoretical study, the following two findings are made. First, the IGRF implies a Gaussian prior on the spherical harmonic coefficients (SHCs) of the gravity potential; for this prior the SHCs are independent with each other and their variances are degree-only dependent. This should be reminiscent of two well-known priors, namely the power-law Kaula’s rule and the asymptotic power-law Tscherning-Rapp model. Second, the IGRF-SRBF representation is non-unique. Benefiting from this redundant representation, one can employ a simple IGRF, e.g., the simplest white field, and then design the SRBF accordingly to represent a potential with desired prior statistical properties. This can simplify the corresponding SRBF modeling significantly; to be more specific, the regularization matrix in parameter estimation of the SRBF modeling can be chosen to be a diagonal matrix, or even the naïve identity matrix.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"247 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01910-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The spherical radial basis function (SRBF) approach, widely used in gravity modeling, is theoretically surveyed from a viewpoint of random field theory. Let the gravity potential be a random field which is represented as an integral functional of another random field, namely an isotropic Gaussian random field (IGRF) on a sphere inside the Bjerhammar sphere with the SRBF as the integral kernel. When the integration is approximated by a discrete sum within a local region, one gets the widely applicable SRBF model. With this theoretical study, the following two findings are made. First, the IGRF implies a Gaussian prior on the spherical harmonic coefficients (SHCs) of the gravity potential; for this prior the SHCs are independent with each other and their variances are degree-only dependent. This should be reminiscent of two well-known priors, namely the power-law Kaula’s rule and the asymptotic power-law Tscherning-Rapp model. Second, the IGRF-SRBF representation is non-unique. Benefiting from this redundant representation, one can employ a simple IGRF, e.g., the simplest white field, and then design the SRBF accordingly to represent a potential with desired prior statistical properties. This can simplify the corresponding SRBF modeling significantly; to be more specific, the regularization matrix in parameter estimation of the SRBF modeling can be chosen to be a diagonal matrix, or even the naïve identity matrix.

球面径向基函数模型:近似各向同性高斯随机场的积分函数
从随机场理论的角度对广泛应用于重力建模的球面径向基函数(SRBF)方法进行了理论研究。假设重力势能是一个随机场,它被表示为另一个随机场的积分函数,即比约哈马球内球面上的各向同性高斯随机场(IGRF),以 SRBF 为积分核。当积分被近似为局部区域内的离散和时,就得到了广泛应用的 SRBF 模型。通过这项理论研究,我们得出了以下两个结论。首先,IGRF 意味着重力势能的球谐波系数(SHCs)有一个高斯先验;对于这个先验,SHCs 是相互独立的,它们的方差只依赖于度。这应该会让人想起两个著名的先验,即幂律考拉规则和渐近幂律齐尔宁-拉普模型。其次,IGRF-SRBF 表示是非唯一的。利用这种冗余表示,我们可以采用简单的 IGRF,例如最简单的白场,然后相应地设计 SRBF,以表示具有所需先验统计特性的电势。这可以大大简化相应的 SRBF 建模;更具体地说,SRBF 建模参数估计中的正则化矩阵可以选择对角矩阵,甚至是天真的同矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信