处理 PPP-RTK 修正延迟的处理策略

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Cheng Ke, Amir Khodabandeh, Baocheng Zhang
{"title":"处理 PPP-RTK 修正延迟的处理策略","authors":"Cheng Ke, Amir Khodabandeh, Baocheng Zhang","doi":"10.1007/s00190-024-01920-8","DOIUrl":null,"url":null,"abstract":"<p>An attractive feature of PPP-RTK is the possibility of reducing the amount of data that needs to be transferred to users. By leveraging the state-space Representation (SSR) of the corrections, the correction provider (i.e., a GNSS network) can consider distinct transfer rates for each of the individual corrections according to their temporal characteristics. Reducing the transfer rates comes at the cost of delivering time-delayed corrections, urging the user to time predict the corrections to bridge the gap between the corrections’ generation time and the positioning time. Consequently, the user Kalman filter needs to be equipped with a strategy to account for the errors caused by such predictions, minimizing the precision loss of the user parameter solutions. In this contribution, we apply a processing strategy for both the network and user filters to handle the latency of corrections. This enables the network to update corrections over longer time-intervals. To have the strategy applicable to regional networks, an ionosphere-weighted model is adopted for the corresponding observations, delivering minimum-variance spatially predicted ionospheric corrections to users. It is shown that certain components of the network filter’s dynamic model are duplicated and should be excluded from processing. To illustrate the performance of the strategy at work, three globally distributed regional networks are employed, and maximum correction latencies to meet different positioning criteria are evaluated. In terms of both the positioning precision and time-to-first-fix (TTFF), the strategy is numerically shown to outperform the user processing case in which the uncertainty of corrections is discarded.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"242 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A processing strategy for handling latency of PPP-RTK corrections\",\"authors\":\"Cheng Ke, Amir Khodabandeh, Baocheng Zhang\",\"doi\":\"10.1007/s00190-024-01920-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An attractive feature of PPP-RTK is the possibility of reducing the amount of data that needs to be transferred to users. By leveraging the state-space Representation (SSR) of the corrections, the correction provider (i.e., a GNSS network) can consider distinct transfer rates for each of the individual corrections according to their temporal characteristics. Reducing the transfer rates comes at the cost of delivering time-delayed corrections, urging the user to time predict the corrections to bridge the gap between the corrections’ generation time and the positioning time. Consequently, the user Kalman filter needs to be equipped with a strategy to account for the errors caused by such predictions, minimizing the precision loss of the user parameter solutions. In this contribution, we apply a processing strategy for both the network and user filters to handle the latency of corrections. This enables the network to update corrections over longer time-intervals. To have the strategy applicable to regional networks, an ionosphere-weighted model is adopted for the corresponding observations, delivering minimum-variance spatially predicted ionospheric corrections to users. It is shown that certain components of the network filter’s dynamic model are duplicated and should be excluded from processing. To illustrate the performance of the strategy at work, three globally distributed regional networks are employed, and maximum correction latencies to meet different positioning criteria are evaluated. In terms of both the positioning precision and time-to-first-fix (TTFF), the strategy is numerically shown to outperform the user processing case in which the uncertainty of corrections is discarded.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"242 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01920-8\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01920-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

PPP-RTK 的一个吸引人的特点是可以减少需要传输给用户的数据量。通过利用校正的状态空间表示法(SSR),校正提供者(即全球导航卫星系统网络)可以根据每个校正的时间特性考虑不同的传输速率。降低传输速率的代价是提供延时修正,这就要求用户对修正进行时间预测,以弥补修正生成时间与定位时间之间的差距。因此,用户卡尔曼滤波器需要配备一种策略,以考虑此类预测造成的误差,从而最大限度地减少用户参数解决方案的精度损失。在本文中,我们对网络和用户滤波器都采用了一种处理策略,以处理修正延迟。这使得网络能够在更长的时间间隔内更新修正。为了使这一策略适用于区域网络,相应的观测采用了电离层加权模型,向用户提供最小方差空间预测电离层修正。结果表明,网络滤波器动态模型的某些组成部分是重复的,应排除在处理之外。为说明该战略的工作性能,采用了三个全球分布的区域网络,并评估了满足不同定位标准的最大校正延迟。在定位精度和首次修正时间(TTFF)方面,数值结果表明,该策略优于用户处理情况(即忽略修正的不确定性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A processing strategy for handling latency of PPP-RTK corrections

An attractive feature of PPP-RTK is the possibility of reducing the amount of data that needs to be transferred to users. By leveraging the state-space Representation (SSR) of the corrections, the correction provider (i.e., a GNSS network) can consider distinct transfer rates for each of the individual corrections according to their temporal characteristics. Reducing the transfer rates comes at the cost of delivering time-delayed corrections, urging the user to time predict the corrections to bridge the gap between the corrections’ generation time and the positioning time. Consequently, the user Kalman filter needs to be equipped with a strategy to account for the errors caused by such predictions, minimizing the precision loss of the user parameter solutions. In this contribution, we apply a processing strategy for both the network and user filters to handle the latency of corrections. This enables the network to update corrections over longer time-intervals. To have the strategy applicable to regional networks, an ionosphere-weighted model is adopted for the corresponding observations, delivering minimum-variance spatially predicted ionospheric corrections to users. It is shown that certain components of the network filter’s dynamic model are duplicated and should be excluded from processing. To illustrate the performance of the strategy at work, three globally distributed regional networks are employed, and maximum correction latencies to meet different positioning criteria are evaluated. In terms of both the positioning precision and time-to-first-fix (TTFF), the strategy is numerically shown to outperform the user processing case in which the uncertainty of corrections is discarded.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信