将高低卫星间跟踪数据和卫星激光测距结合起来,弥合全球资源环境行动(GRACE)和全球资源环境行动后续行动(GRACE Follow-On )之间的差距

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Matthias Weigelt, Adrian Jäggi, Ulrich Meyer, Daniel Arnold, Torsten Mayer-Gürr, Felix Öhlinger, Krzysztof Sośnica, Sahar Ebadi, Steffen Schön, Holger Steffen
{"title":"将高低卫星间跟踪数据和卫星激光测距结合起来,弥合全球资源环境行动(GRACE)和全球资源环境行动后续行动(GRACE Follow-On )之间的差距","authors":"Matthias Weigelt, Adrian Jäggi, Ulrich Meyer, Daniel Arnold, Torsten Mayer-Gürr, Felix Öhlinger, Krzysztof Sośnica, Sahar Ebadi, Steffen Schön, Holger Steffen","doi":"10.1007/s00190-024-01888-5","DOIUrl":null,"url":null,"abstract":"<p>The satellite missions GRACE and GRACE Follow-On have undoubtedly been the most important sources to observe mass transport on global scales. Within the Combination Service for Time-Variable Gravity Fields (COST-G), gravity field solutions from various processing centers are being combined to improve the signal-to-noise ratio and further increase the spatial resolution. The time series of monthly gravity field solutions suffer from a data gap of about one year between the two missions GRACE and GRACE Follow-On among several smaller data gaps. We present an intermediate technique bridging the gap between the two missions allowing (1) for a continued and uninterrupted time series of mass observations and (2) to compare, cross-validate and link the two time series. We focus on the combination of high-low satellite-to-satellite tracking (HL-SST) of low-Earth orbiting satellites by GPS in combination with satellite laser ranging (SLR), where SLR contributes to the very low degrees and HL-SST is able to provide the higher spatial resolution at an lower overall precision compared to GRACE-like solutions. We present a complete series covering the period from 2003 to 2022 filling the gaps of GRACE and between the missions. The achieved spatial resolution is approximately 700 km at a monthly temporal resolutions throughout the time period of interest. For the purpose of demonstrating possible applications, we estimate the low degree glacial isostatic adjustment signal in Fennoscandia and North America. In both cases, the location, the signal strength and extend of the signal coincide well with GRACE/GRACE-FO solutions achieving 99.5% and 86.5% correlation, respectively.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"231 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the gap between GRACE and GRACE Follow-On by combining high–low satellite-to-satellite tracking data and satellite laser ranging\",\"authors\":\"Matthias Weigelt, Adrian Jäggi, Ulrich Meyer, Daniel Arnold, Torsten Mayer-Gürr, Felix Öhlinger, Krzysztof Sośnica, Sahar Ebadi, Steffen Schön, Holger Steffen\",\"doi\":\"10.1007/s00190-024-01888-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The satellite missions GRACE and GRACE Follow-On have undoubtedly been the most important sources to observe mass transport on global scales. Within the Combination Service for Time-Variable Gravity Fields (COST-G), gravity field solutions from various processing centers are being combined to improve the signal-to-noise ratio and further increase the spatial resolution. The time series of monthly gravity field solutions suffer from a data gap of about one year between the two missions GRACE and GRACE Follow-On among several smaller data gaps. We present an intermediate technique bridging the gap between the two missions allowing (1) for a continued and uninterrupted time series of mass observations and (2) to compare, cross-validate and link the two time series. We focus on the combination of high-low satellite-to-satellite tracking (HL-SST) of low-Earth orbiting satellites by GPS in combination with satellite laser ranging (SLR), where SLR contributes to the very low degrees and HL-SST is able to provide the higher spatial resolution at an lower overall precision compared to GRACE-like solutions. We present a complete series covering the period from 2003 to 2022 filling the gaps of GRACE and between the missions. The achieved spatial resolution is approximately 700 km at a monthly temporal resolutions throughout the time period of interest. For the purpose of demonstrating possible applications, we estimate the low degree glacial isostatic adjustment signal in Fennoscandia and North America. In both cases, the location, the signal strength and extend of the signal coincide well with GRACE/GRACE-FO solutions achieving 99.5% and 86.5% correlation, respectively.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"231 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01888-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01888-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

卫星飞行任务 GRACE 和 GRACE Follow-On 无疑是观测全球范围质量迁移的最重要来源。在时变重力场组合服务(COST-G)范围内,正在对来自不同处理中心的重力场解决方案进行组合,以提高信噪比并进一步提高空间分辨率。月重力场解的时间序列在两次任务 GRACE 和 GRACE Follow-On 之间存在约一年的数据差距,同时还存在几个较小的数据差距。我们提出了一种中间技术来弥合两个任务之间的差距,从而(1)获得持续不间断的质量观测时间序列,(2)对两个时间序列进行比较、交叉验证和连接。我们的重点是将全球定位系统对低地球轨道卫星的高低卫星间跟踪(HL-SST)与卫星激光测距(SLR)结合起来,其中 SLR 对极低度数有贡献,而 HL-SST 能够提供更高的空间分辨率,但与 GRACE 类似的解决方案相比,总体精度较低。我们提出了一个涵盖 2003 年至 2022 年的完整系列,填补了 GRACE 和各任务之间的空白。实现的空间分辨率约为 700 公里,整个时间段的时间分辨率为每月一次。为了展示可能的应用,我们估算了芬诺斯坎迪亚和北美洲的低度冰川等静力调整信号。在这两种情况下,信号的位置、信号强度和范围都与 GRACE/GRACE-FO 解决方案非常吻合,相关性分别达到 99.5% 和 86.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridging the gap between GRACE and GRACE Follow-On by combining high–low satellite-to-satellite tracking data and satellite laser ranging

Bridging the gap between GRACE and GRACE Follow-On by combining high–low satellite-to-satellite tracking data and satellite laser ranging

The satellite missions GRACE and GRACE Follow-On have undoubtedly been the most important sources to observe mass transport on global scales. Within the Combination Service for Time-Variable Gravity Fields (COST-G), gravity field solutions from various processing centers are being combined to improve the signal-to-noise ratio and further increase the spatial resolution. The time series of monthly gravity field solutions suffer from a data gap of about one year between the two missions GRACE and GRACE Follow-On among several smaller data gaps. We present an intermediate technique bridging the gap between the two missions allowing (1) for a continued and uninterrupted time series of mass observations and (2) to compare, cross-validate and link the two time series. We focus on the combination of high-low satellite-to-satellite tracking (HL-SST) of low-Earth orbiting satellites by GPS in combination with satellite laser ranging (SLR), where SLR contributes to the very low degrees and HL-SST is able to provide the higher spatial resolution at an lower overall precision compared to GRACE-like solutions. We present a complete series covering the period from 2003 to 2022 filling the gaps of GRACE and between the missions. The achieved spatial resolution is approximately 700 km at a monthly temporal resolutions throughout the time period of interest. For the purpose of demonstrating possible applications, we estimate the low degree glacial isostatic adjustment signal in Fennoscandia and North America. In both cases, the location, the signal strength and extend of the signal coincide well with GRACE/GRACE-FO solutions achieving 99.5% and 86.5% correlation, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信