Two methods for spherical harmonic analysis of area mean values over equiangular blocks based on exact spherical harmonic analysis of point values

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Rong Sun, Zhicai Luo
{"title":"Two methods for spherical harmonic analysis of area mean values over equiangular blocks based on exact spherical harmonic analysis of point values","authors":"Rong Sun, Zhicai Luo","doi":"10.1007/s00190-024-01900-y","DOIUrl":null,"url":null,"abstract":"<p>Currently, the least-square estimation method is the mainstream method for recovering spherical harmonic coefficients from area mean values over equiangular blocks. Since the least-square estimation method involves matrix inversion, it requires great computation power when the maximum degree to be solved is large. In comparison, numerical quadrature methods are faster. Recent numerical quadrature methods designed for spherical harmonic analysis of area mean values over blocks delineated by equiangular and Gaussian grids are both fast and exact for band-limited data. However, for band-limited area mean values over an equiangular grid that has <span>\\(N\\)</span> blocks along the colatitude direction and <span>\\(2N\\)</span> blocks along the longitude direction, the maximum degree that can be recovered by using current exact numerical quadrature methods is no larger than <span>\\(N/2-1\\)</span>. In this study, by using Lagrange’s method for polynomial interpolation, recently proposed numerical quadrature methods that employ the recurrence relations for the integrals of the associated Legendre’s functions are modified into two new methods. By using these methods, the maximum degree of recovered spherical harmonic coefficients is <span>\\(N-1\\)</span>. The results show that these newly proposed methods are comparable in computation speed with the current numerical quadrature methods and are comparable in accuracy with the least-square estimation method for both band-limited and aliased data. Moreover, solving linear systems is not necessary for these two new methods. The error characteristics of these two new methods are quite different from those of methods that employ least-square methods. The spherical harmonic coefficients recovered using these new methods can effectively supplement those recovered using least-square methods.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"87 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01900-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the least-square estimation method is the mainstream method for recovering spherical harmonic coefficients from area mean values over equiangular blocks. Since the least-square estimation method involves matrix inversion, it requires great computation power when the maximum degree to be solved is large. In comparison, numerical quadrature methods are faster. Recent numerical quadrature methods designed for spherical harmonic analysis of area mean values over blocks delineated by equiangular and Gaussian grids are both fast and exact for band-limited data. However, for band-limited area mean values over an equiangular grid that has \(N\) blocks along the colatitude direction and \(2N\) blocks along the longitude direction, the maximum degree that can be recovered by using current exact numerical quadrature methods is no larger than \(N/2-1\). In this study, by using Lagrange’s method for polynomial interpolation, recently proposed numerical quadrature methods that employ the recurrence relations for the integrals of the associated Legendre’s functions are modified into two new methods. By using these methods, the maximum degree of recovered spherical harmonic coefficients is \(N-1\). The results show that these newly proposed methods are comparable in computation speed with the current numerical quadrature methods and are comparable in accuracy with the least-square estimation method for both band-limited and aliased data. Moreover, solving linear systems is not necessary for these two new methods. The error characteristics of these two new methods are quite different from those of methods that employ least-square methods. The spherical harmonic coefficients recovered using these new methods can effectively supplement those recovered using least-square methods.

Abstract Image

基于点值精确球谐波分析的等角块面积均值球谐波分析的两种方法
目前,最小二乘估计法是从等边块的面积平均值中恢复球谐波系数的主流方法。由于最小平方估计法涉及矩阵反演,当需要求解的最大度数较大时,需要很大的计算能力。相比之下,数值正交方法速度更快。最近设计的数值正交方法用于对等边网格和高斯网格划分的区块上的面积均值进行球谐波分析,对于带限数据既快速又精确。然而,对于沿经度方向有 \(N\) 个区块和沿经度方向有 \(2N\) 个区块的等边网格上的带限面积均值,使用当前的精确数值正交方法所能恢复的最大度数不大于 \(N/2-1\)。在本研究中,通过使用多项式插值的拉格朗日方法,将最近提出的利用相关 Legendre 函数积分的递推关系的数值正交方法修改为两种新方法。通过使用这些方法,恢复球谐波系数的最大度数为 \(N-1\)。结果表明,这些新提出的方法在计算速度上与目前的数值正交方法相当,在带限数据和混叠数据的精度上与最小二乘法估计方法相当。此外,这两种新方法无需求解线性系统。这两种新方法的误差特性与采用最小二乘法的方法截然不同。使用这两种新方法恢复的球谐波系数可以有效补充使用最小二乘法恢复的系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信