Franco S. Sobrero, Kevin Ahlgren, Michael G. Bevis, Demián D. Gómez, Jacob Heck, Arturo Echalar, Dana J. Caccamise, Eric Kendrick, Paola Montenegro, Ariele Batistti, Lizeth Contreras Choque, Juan Carlos Catari, Roger Tinta Sallico, Hernan Guerra Trigo
{"title":"A robust approach to terrestrial relative gravity measurements and adjustment of gravity networks","authors":"Franco S. Sobrero, Kevin Ahlgren, Michael G. Bevis, Demián D. Gómez, Jacob Heck, Arturo Echalar, Dana J. Caccamise, Eric Kendrick, Paola Montenegro, Ariele Batistti, Lizeth Contreras Choque, Juan Carlos Catari, Roger Tinta Sallico, Hernan Guerra Trigo","doi":"10.1007/s00190-024-01891-w","DOIUrl":null,"url":null,"abstract":"<p>Like many geophysical observations, relative gravity (RG) measurements are affected by random errors, systematic errors, and occasional blunders. When RG measurements are used to build large gravity networks in remote areas under adverse environmental or logistical conditions (such as extreme temperatures, heavy precipitation, rugged terrain, difficult or dangerous roads, and high altitudes), it is more likely for significant errors to occur and accumulate. Therefore, obtaining accurate gravity estimates at regional gravity networks largely depends on defensive data collection protocols and robust adjustment techniques. In this work, we present a measurement field protocol based on highly redundant observation patterns, and a two-step least squares adjustment scheme implemented as a MATLAB package. This software helps us identify blunders, mitigates the impact of random errors, and downweights or removes outlier observations. The methodology also guarantees that adjusted gravity values have well-constrained standard error estimates. We illustrate the capabilities of our approach through the case study of the Bolivian gravity network, where we determined the acceleration due to gravity at 2548 stations that spread over difficult and sometimes extreme environments, with a typical level of uncertainty of 0.10–0.15 mGal.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"30 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01891-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Like many geophysical observations, relative gravity (RG) measurements are affected by random errors, systematic errors, and occasional blunders. When RG measurements are used to build large gravity networks in remote areas under adverse environmental or logistical conditions (such as extreme temperatures, heavy precipitation, rugged terrain, difficult or dangerous roads, and high altitudes), it is more likely for significant errors to occur and accumulate. Therefore, obtaining accurate gravity estimates at regional gravity networks largely depends on defensive data collection protocols and robust adjustment techniques. In this work, we present a measurement field protocol based on highly redundant observation patterns, and a two-step least squares adjustment scheme implemented as a MATLAB package. This software helps us identify blunders, mitigates the impact of random errors, and downweights or removes outlier observations. The methodology also guarantees that adjusted gravity values have well-constrained standard error estimates. We illustrate the capabilities of our approach through the case study of the Bolivian gravity network, where we determined the acceleration due to gravity at 2548 stations that spread over difficult and sometimes extreme environments, with a typical level of uncertainty of 0.10–0.15 mGal.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics