A robust approach to terrestrial relative gravity measurements and adjustment of gravity networks

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Franco S. Sobrero, Kevin Ahlgren, Michael G. Bevis, Demián D. Gómez, Jacob Heck, Arturo Echalar, Dana J. Caccamise, Eric Kendrick, Paola Montenegro, Ariele Batistti, Lizeth Contreras Choque, Juan Carlos Catari, Roger Tinta Sallico, Hernan Guerra Trigo
{"title":"A robust approach to terrestrial relative gravity measurements and adjustment of gravity networks","authors":"Franco S. Sobrero, Kevin Ahlgren, Michael G. Bevis, Demián D. Gómez, Jacob Heck, Arturo Echalar, Dana J. Caccamise, Eric Kendrick, Paola Montenegro, Ariele Batistti, Lizeth Contreras Choque, Juan Carlos Catari, Roger Tinta Sallico, Hernan Guerra Trigo","doi":"10.1007/s00190-024-01891-w","DOIUrl":null,"url":null,"abstract":"<p>Like many geophysical observations, relative gravity (RG) measurements are affected by random errors, systematic errors, and occasional blunders. When RG measurements are used to build large gravity networks in remote areas under adverse environmental or logistical conditions (such as extreme temperatures, heavy precipitation, rugged terrain, difficult or dangerous roads, and high altitudes), it is more likely for significant errors to occur and accumulate. Therefore, obtaining accurate gravity estimates at regional gravity networks largely depends on defensive data collection protocols and robust adjustment techniques. In this work, we present a measurement field protocol based on highly redundant observation patterns, and a two-step least squares adjustment scheme implemented as a MATLAB package. This software helps us identify blunders, mitigates the impact of random errors, and downweights or removes outlier observations. The methodology also guarantees that adjusted gravity values have well-constrained standard error estimates. We illustrate the capabilities of our approach through the case study of the Bolivian gravity network, where we determined the acceleration due to gravity at 2548 stations that spread over difficult and sometimes extreme environments, with a typical level of uncertainty of 0.10–0.15 mGal.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"30 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01891-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Like many geophysical observations, relative gravity (RG) measurements are affected by random errors, systematic errors, and occasional blunders. When RG measurements are used to build large gravity networks in remote areas under adverse environmental or logistical conditions (such as extreme temperatures, heavy precipitation, rugged terrain, difficult or dangerous roads, and high altitudes), it is more likely for significant errors to occur and accumulate. Therefore, obtaining accurate gravity estimates at regional gravity networks largely depends on defensive data collection protocols and robust adjustment techniques. In this work, we present a measurement field protocol based on highly redundant observation patterns, and a two-step least squares adjustment scheme implemented as a MATLAB package. This software helps us identify blunders, mitigates the impact of random errors, and downweights or removes outlier observations. The methodology also guarantees that adjusted gravity values have well-constrained standard error estimates. We illustrate the capabilities of our approach through the case study of the Bolivian gravity network, where we determined the acceleration due to gravity at 2548 stations that spread over difficult and sometimes extreme environments, with a typical level of uncertainty of 0.10–0.15 mGal.

Abstract Image

地面相对重力测量和重力网络调整的稳健方法
与许多地球物理观测一样,相对重力(RG)测量也会受到随机误差、系统误差和偶然失误的影响。当相对重力测量用于在偏远地区不利的环境或后勤条件(如极端温度、强降水、崎岖地形、困难或危险的道路以及高海拔)下建立大型重力网络时,更有可能出现并积累重大误差。因此,在区域重力网络上获得准确的重力估算值在很大程度上取决于防御性数据采集协议和强大的调整技术。在这项工作中,我们提出了一种基于高度冗余观测模式的实地测量方案,以及一种以 MATLAB 软件包形式实现的两步最小二乘调整方案。该软件可帮助我们识别失误,减轻随机误差的影响,降低或消除离群观测数据的权重。该方法还能保证调整后的重力值具有约束良好的标准误差估计值。我们通过玻利维亚重力网络的案例研究来说明我们的方法的能力,我们在 2548 个站点测定了重力加速度,这些站点分布在困难的、有时是极端的环境中,典型的不确定性水平为 0.10-0.15 mGal。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信