{"title":"Positivity in T-equivariant K-theory of partial flag varieties associated to Kac-Moody groups","authors":"Joseph Compton, Shrawan Kumar","doi":"10.1016/j.jpaa.2025.108026","DOIUrl":"10.1016/j.jpaa.2025.108026","url":null,"abstract":"<div><div>We prove sign-alternation of the product structure constants in the basis dual to the basis consisting of the structure sheaves of Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the partial flag varieties <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span> associated to an arbitrary symmetrizable Kac-Moody group <em>G</em>, where <em>P</em> is any parabolic subgroup of finite type. This extends the previous work of Kumar from <span><math><mi>G</mi><mo>/</mo><mi>B</mi></math></span> to <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span>. When <em>G</em> is of finite type, i.e., it is a semisimple group, then it was proved by Anderson-Griffeth-Miller.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108026"},"PeriodicalIF":0.7,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144314438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bredon motivic cohomology of the real numbers","authors":"Bill Deng, Mircea Voineagu","doi":"10.1016/j.jpaa.2025.108016","DOIUrl":"10.1016/j.jpaa.2025.108016","url":null,"abstract":"<div><div>Over the real numbers with <span><math><mi>Z</mi><mo>/</mo><mn>2</mn></math></span>-coefficients, we compute the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant Borel motivic cohomology ring, the Bredon motivic cohomology groups and prove that the Bredon motivic cohomology ring of real numbers is a proper subring in the <span><math><mi>R</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-graded Bredon cohomology ring of a point.</div><div>This generalizes Voevodsky's computation of the motivic cohomology ring of the real numbers to the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant setting. These computations are extended afterwards to any real closed field.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108016"},"PeriodicalIF":0.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144240838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Bamberg, Alice Devillers, Mark Ioppolo, Cheryl E. Praeger
{"title":"Codes and designs in Johnson graphs from symplectic actions on quadratic forms","authors":"John Bamberg, Alice Devillers, Mark Ioppolo, Cheryl E. Praeger","doi":"10.1016/j.jpaa.2025.108015","DOIUrl":"10.1016/j.jpaa.2025.108015","url":null,"abstract":"<div><div>The Johnson graph <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> has as vertices the <em>k</em>-subsets of <span><math><mi>V</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>v</mi><mo>}</mo></math></span>, and two vertices are joined by an edge if their intersection has size <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. An <em>X-strongly incidence-transitive code</em> in <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is a proper vertex subset Γ such that the subgroup <em>X</em> of graph automorphisms leaving Γ invariant is transitive on the set Γ of ‘codewords’, and for each codeword Δ, the setwise stabiliser <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span> is transitive on <span><math><mi>Δ</mi><mo>×</mo><mo>(</mo><mi>V</mi><mo>∖</mo><mi>Δ</mi><mo>)</mo></math></span>. We classify the <em>X-strongly incidence-transitive codes</em> in <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> for which <em>X</em> is the symplectic group <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo></math></span> acting as a 2-transitive permutation group of degree <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>±</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where the stabiliser <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span> of a codeword Δ is contained in a <em>geometric</em> maximal subgroup of <em>X</em>. In particular, we construct two new infinite families of strongly incidence-transitive codes associated with the reducible maximal subgroups of <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108015"},"PeriodicalIF":0.7,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum and addendum to “Transitive permutation groups where nontrivial elements have at most two fixed points” [J. Pure Appl. Algebra 219(4) (2015) 729–759]","authors":"Paula Hähndel, Rebecca Waldecker","doi":"10.1016/j.jpaa.2025.108006","DOIUrl":"10.1016/j.jpaa.2025.108006","url":null,"abstract":"<div><div>This article revisits earlier work by the second author together with Kay Magaard. We correct several little results and we briefly discuss why, fortunately, the errors hardly affect our main theorems and in particular do not affect the classification of simple groups that act with fixity 2.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108006"},"PeriodicalIF":0.7,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The canonical ideal and the deformation theory of curves with automorphisms","authors":"Aristides Kontogeorgis, Alexios Terezakis","doi":"10.1016/j.jpaa.2025.108002","DOIUrl":"10.1016/j.jpaa.2025.108002","url":null,"abstract":"<div><div>The deformation theory of curves is studied by using the canonical ideal. The deformation problem of curves with automorphisms is reduced to a deformation problem of linear representations.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108002"},"PeriodicalIF":0.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polynomial differential systems with invariant algebraic curves of arbitrary degree formed by Legendre polynomials","authors":"Jaume Llibre , Claudia Valls","doi":"10.1016/j.jpaa.2025.108001","DOIUrl":"10.1016/j.jpaa.2025.108001","url":null,"abstract":"<div><div>In 1891 Poincaré asked: <em>Given</em> <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span><em>, is there a positive integer</em> <span><math><mi>M</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> <em>such that if a polynomial differential system of degree m has an invariant algebraic curve of degree</em> <span><math><mo>≥</mo><mi>M</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span><em>, then it has a rational first integral?</em> Brunella and Mendes repeated the same open question in 2000, and Lins-Neto in 2002. Between the years 2001 and 2003 three different families of quadratic polynomial differential systems provided a negative answer to this question. One of the answers used the Hermite polynomials. Recently a new negative answer was provided for polynomial differential systems of arbitrary degree using the Laguerre polynomials.</div><div>In this paper we provide another new negative answer but using for first time the Legendre polynomials. So the orthogonal polynomials play a role in the Poincaré's question. Moreover we classify the phase portraits of these polynomial differential systems having invariant algebraic curves of arbitrary degree based on the Legendre polynomials.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108001"},"PeriodicalIF":0.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetric and exterior squares of hook representations","authors":"Szabolcs Mészáros , János Wolosz","doi":"10.1016/j.jpaa.2025.108003","DOIUrl":"10.1016/j.jpaa.2025.108003","url":null,"abstract":"<div><div>We determine the multiplicities of irreducible summands in the symmetric and the exterior squares of hook representations of symmetric groups over a field of characteristic zero.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108003"},"PeriodicalIF":0.7,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantifier-free formulas and quantifier alternation depth in doctrines","authors":"Marco Abbadini , Francesca Guffanti","doi":"10.1016/j.jpaa.2025.108004","DOIUrl":"10.1016/j.jpaa.2025.108004","url":null,"abstract":"<div><div>This paper aims to incorporate the notion of quantifier-free formulas modulo a first-order theory and the stratification of formulas by quantifier alternation depth modulo a first-order theory into the algebraic treatment of classical first-order logic.</div><div>The set of quantifier-free formulas modulo a theory is axiomatized by what we call a <em>quantifier-free fragment</em> of a Boolean doctrine with quantifiers. Rather than being an intrinsic notion, a quantifier-free fragment is an additional structure on a Boolean doctrine with quantifiers. Under a smallness assumption, the structures occurring as quantifier-free fragments of some Boolean doctrine with quantifiers are precisely the Boolean doctrines (without quantifiers). In particular, every Boolean doctrine over a small category is a quantifier-free fragment of its quantifier completion.</div><div>Furthermore, the sequences obtained by stratifying an algebra of formulas by quantifier alternation depth modulo a theory are axiomatized by what we call <em>QA-stratified Boolean doctrines</em>. While quantifier-free fragments are defined in relation to an “ambient” Boolean doctrine with quantifiers, a QA-stratified Boolean doctrine requires no such ambient doctrine, and it consists of a sequence of Boolean doctrines (without quantifiers) with connecting axioms. QA-stratified Boolean doctrines are in one-to-one correspondence with pairs consisting of a Boolean doctrine with quantifiers and a quantifier-free fragment of it.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108004"},"PeriodicalIF":0.7,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Grothendieck group of a triangulated category","authors":"Xiao-Wu Chen , Zhi-Wei Li , Xiaojin Zhang , Zhibing Zhao","doi":"10.1016/j.jpaa.2025.108005","DOIUrl":"10.1016/j.jpaa.2025.108005","url":null,"abstract":"<div><div>We give a direct proof of the following known result: the Grothendieck group of a triangulated category with a silting subcategory is isomorphic to the split Grothendieck group of the silting subcategory. Moreover, we obtain its cluster-tilting analogue.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108005"},"PeriodicalIF":0.7,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144147341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Random unipotent Sylow subgroups of groups of Lie type of bounded rank","authors":"Saveliy V. Skresanov","doi":"10.1016/j.jpaa.2025.108007","DOIUrl":"10.1016/j.jpaa.2025.108007","url":null,"abstract":"<div><div>In 2001 Liebeck and Pyber showed that a finite simple group of Lie type is a product of 25 carefully chosen unipotent Sylow subgroups. Later, in a series of works it was shown that 4 unipotent Sylow subgroups suffice. We prove that if the rank of a finite simple group of Lie type <em>G</em> is bounded, then <em>G</em> is a product of 11 random unipotent Sylow subgroups with probability tending to 1 as <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span> tends to infinity. An application of the result to finite linear groups is given. The proofs do not depend on the classification of finite simple groups.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108007"},"PeriodicalIF":0.7,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}