Journal of Pure and Applied Algebra最新文献

筛选
英文 中文
Corrigendum to “Trace forms on the cyclotomic Hecke algebras and cocenters of the cyclotomic Schur algebras” [J. Pure Appl. Algebra 227(4) (2023) 107281] “切环Hecke代数和切环Schur代数的中心上的迹形”的更正[J]。纯粹的达成。代数227(4)(2023)107281]
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-05-02 DOI: 10.1016/j.jpaa.2025.107981
Zhekun He , Jun Hu , Huang Lin
{"title":"Corrigendum to “Trace forms on the cyclotomic Hecke algebras and cocenters of the cyclotomic Schur algebras” [J. Pure Appl. Algebra 227(4) (2023) 107281]","authors":"Zhekun He , Jun Hu , Huang Lin","doi":"10.1016/j.jpaa.2025.107981","DOIUrl":"10.1016/j.jpaa.2025.107981","url":null,"abstract":"","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107981"},"PeriodicalIF":0.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143895031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Le théorème de Lüroth pour les corps de fractions tordus par un automorphisme fini 由有限自同构弯曲的分数场的Luroth定理
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-28 DOI: 10.1016/j.jpaa.2025.107982
Bruno Deschamps
{"title":"Le théorème de Lüroth pour les corps de fractions tordus par un automorphisme fini","authors":"Bruno Deschamps","doi":"10.1016/j.jpaa.2025.107982","DOIUrl":"10.1016/j.jpaa.2025.107982","url":null,"abstract":"<div><div>The main object of this article is to show the generalization of Lüroth's theorem to the case of a skew fraction field <span><math><mi>H</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span>, where <em>H</em> denotes a field of finite dimension over its center and <span><math><mi>σ</mi><mo>∈</mo><mtext>Aut</mtext><mo>(</mo><mi>H</mi><mo>)</mo></math></span> an automorphism of finite order.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107982"},"PeriodicalIF":0.7,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143904150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On groups with at most five irrational conjugacy classes 关于最多有五个不合理共轭类的群体
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-28 DOI: 10.1016/j.jpaa.2025.107980
Gabriel A.L. Souza
{"title":"On groups with at most five irrational conjugacy classes","authors":"Gabriel A.L. Souza","doi":"10.1016/j.jpaa.2025.107980","DOIUrl":"10.1016/j.jpaa.2025.107980","url":null,"abstract":"<div><div>Much work has been done to study groups with few rational conjugacy classes or few rational irreducible characters. In this paper we look at the opposite extreme. Let <em>G</em> be a finite group. Given a conjugacy class <em>K</em> of <em>G</em>, we say it is <em>irrational</em> if there is some <span><math><mi>χ</mi><mo>∈</mo><mi>Irr</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that <span><math><mi>χ</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>∉</mo><mi>Q</mi></math></span>. One of our main results shows that, when <em>G</em> contains at most 5 irrational conjugacy classes, then <span><math><mo>|</mo><msub><mrow><mi>Irr</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>Cl</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. This suggests some duality with the known results and open questions on groups with few rational irreducible characters. Our results are independent of the Classification of Finite Simple Groups.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107980"},"PeriodicalIF":0.7,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143904148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biased elementary doctrines and quotient completions 偏颇的基本原理与商完备
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-28 DOI: 10.1016/j.jpaa.2025.107983
Cipriano Junior Cioffo
{"title":"Biased elementary doctrines and quotient completions","authors":"Cipriano Junior Cioffo","doi":"10.1016/j.jpaa.2025.107983","DOIUrl":"10.1016/j.jpaa.2025.107983","url":null,"abstract":"<div><div>In this work, we fill the gap between the elementary quotient completion introduced by Maietti and Rosolini and the exact completion of a category with weak finite limits, as described by Carboni and Vitale. To achieve this, we generalize Lawvere's elementary doctrines to apply to categories with weak finite products, referring to these structures as biased elementary doctrines. We present two main constructions: the first, called strictification, produces an elementary doctrine from a biased one, while the second is an extension of the elementary quotient completion that generalizes the exact completion of a category with weak finite limits, even when weak finite products are involved.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107983"},"PeriodicalIF":0.7,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143905950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the hyperfields associated to valued fields 在与值字段关联的超字段上
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-25 DOI: 10.1016/j.jpaa.2025.107985
Alessandro Linzi , Pierre Touchard
{"title":"On the hyperfields associated to valued fields","authors":"Alessandro Linzi ,&nbsp;Pierre Touchard","doi":"10.1016/j.jpaa.2025.107985","DOIUrl":"10.1016/j.jpaa.2025.107985","url":null,"abstract":"<div><div>One can associate an inverse system of valued hyperfields <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></math></span> to a valued field in a natural way. We investigate when, conversely, such a system arises from a valued field. First, we extend a result of Krasner by showing that the inverse limit of certain systems are stringent valued hyperfields. Secondly, we describe a Hahn-like construction which yields a henselian valued field from a stringent valued hyperfield. In addition, we provide an axiomatisation of the theory of stringent valued hyperfields in a language consisting of two binary function symbols, ⊕ and ⋅, and two constant symbols, <strong>0</strong> and <strong>1</strong>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107985"},"PeriodicalIF":0.7,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silting interval reduction and 0-Auslander extriangulated categories 泥沙间隔减少和0-Auslander三角化分类
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-25 DOI: 10.1016/j.jpaa.2025.107978
Jixing Pan , Bin Zhu
{"title":"Silting interval reduction and 0-Auslander extriangulated categories","authors":"Jixing Pan ,&nbsp;Bin Zhu","doi":"10.1016/j.jpaa.2025.107978","DOIUrl":"10.1016/j.jpaa.2025.107978","url":null,"abstract":"<div><div>We give a reduction technique for silting intervals in extriangulated categories, which we call silting interval reduction. It provides a reduction technique for tilting subcategories when the extriangulated categories are exact categories.</div><div>In 0-Auslander extriangulated categories (a generalization of the well-known two-term category <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></mrow></msup><mo>(</mo><mrow><mi>proj</mi></mrow><mi>Λ</mi><mo>)</mo></math></span> for an Artin algebra Λ), we provide a reduction theory for silting objects as an application of silting interval reduction. It unifies two-term silting reduction and Iyama-Yoshino's 2-Calabi-Yau reduction. The mutation theory developed by Gorsky, Nakaoka and Palu recently can be deduced from it. Since there are bijections between the silting objects and the support <em>τ</em>-tilting modules over certain finite dimensional algebras, we show it is compatible with <em>τ</em>-tilting reduction. This compatibility theorem also unifies the two compatibility theorems obtained by Jasso in his work on <em>τ</em>-tilting reduction.</div><div>We give a new construction for 0-Auslander extriangulated categories using silting mutation, together with silting interval reduction, we obtain some results on silting quivers. Finally, we prove that <em>d</em>-Auslander extriangulated categories are related to a certain sequence of silting mutations.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107978"},"PeriodicalIF":0.7,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143904149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the injective self-maps of algebraic varieties 代数变种的内射自映射
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-25 DOI: 10.1016/j.jpaa.2025.107988
Indranil Biswas , Nilkantha Das
{"title":"On the injective self-maps of algebraic varieties","authors":"Indranil Biswas ,&nbsp;Nilkantha Das","doi":"10.1016/j.jpaa.2025.107988","DOIUrl":"10.1016/j.jpaa.2025.107988","url":null,"abstract":"<div><div>A conjecture of Miyanishi says that an endomorphism of an algebraic variety, defined over an algebraically closed field of characteristic zero, is an automorphism if the endomorphism is injective outside a closed subset of codimension at least 2. We prove the conjecture in the following cases:<ul><li><span>(1)</span><span><div>The variety is non-singular.</div></span></li><li><span>(2)</span><span><div>The variety is a surface.</div></span></li><li><span>(3)</span><span><div>The variety is locally a complete intersection that is regular in codimension 2.</div></span></li></ul> We also discuss a few instances where an endomorphism of a variety, satisfying the hypothesis of the conjecture of Miyanishi, induces an automorphism of the non-singular locus of the variety. Under additional hypotheses, we prove that the conjecture holds when the variety has only isolated singularities.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107988"},"PeriodicalIF":0.7,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143883219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symplectic period for a representation of GLn(D) GLn(D)表示的辛周期
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-25 DOI: 10.1016/j.jpaa.2025.107976
Hariom Sharma, Mahendra Kumar Verma
{"title":"Symplectic period for a representation of GLn(D)","authors":"Hariom Sharma,&nbsp;Mahendra Kumar Verma","doi":"10.1016/j.jpaa.2025.107976","DOIUrl":"10.1016/j.jpaa.2025.107976","url":null,"abstract":"<div><div>Let <em>n</em> be a natural number, taking the value 3 or 4. Let D be a quaternion division algebra over a non-archimedean local field k of characteristic zero, and let <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> be the unique non-split inner form of the symplectic group <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>. This paper classifies those irreducible admissible representations of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> that admit a symplectic period, that is, those irreducible admissible representations <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> which have a linear functional <em>l</em> on <em>V</em> such that <span><math><mi>l</mi><mo>(</mo><mi>π</mi><mo>(</mo><mi>h</mi><mo>)</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>l</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>V</mi></math></span> and <span><math><mi>h</mi><mo>∈</mo><msub><mrow><mi>Sp</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. Our results also contain all unitary representations having a symplectic period, as stated in Prasad's conjecture.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107976"},"PeriodicalIF":0.7,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143887581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quiver Hecke algebras for Borcherds-Cartan datum II Borcherds-Cartan日期II的Quiver Hecke代数
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-25 DOI: 10.1016/j.jpaa.2025.107977
Bolun Tong , Wan Wu
{"title":"Quiver Hecke algebras for Borcherds-Cartan datum II","authors":"Bolun Tong ,&nbsp;Wan Wu","doi":"10.1016/j.jpaa.2025.107977","DOIUrl":"10.1016/j.jpaa.2025.107977","url":null,"abstract":"<div><div>We give the crystal structure of the Grothendieck group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of irreducible modules over the quiver Hecke algebra <em>R</em> constructed in <span><span>[15]</span></span>. This leads to the categorification of the crystal <span><math><mi>B</mi><mo>(</mo><mo>∞</mo><mo>)</mo></math></span> of the quantum Borcherds algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>g</mi><mo>)</mo></math></span> and its irreducible highest weight crystal <span><math><mi>B</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> for arbitrary Borcherds-Cartan data. Additionally, we study the cyclotomic categorification of irreducible highest weight <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>g</mi><mo>)</mo></math></span>-modules.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107977"},"PeriodicalIF":0.7,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143905949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensor product of A∞-categories A∞-类的张量积
IF 0.7 2区 数学
Journal of Pure and Applied Algebra Pub Date : 2025-04-25 DOI: 10.1016/j.jpaa.2025.107987
Mattia Ornaghi
{"title":"Tensor product of A∞-categories","authors":"Mattia Ornaghi","doi":"10.1016/j.jpaa.2025.107987","DOIUrl":"10.1016/j.jpaa.2025.107987","url":null,"abstract":"<div><div>In this paper we define the tensor product of two <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories and two <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-functors. This tensor product makes the category of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories symmetric monoidal (up to homotopy), and the category <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><msup><mrow><mi>Cat</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>/</mo><mo>≈</mo></math></span> a closed symmetric monoidal category. Moreover, we define the derived tensor product making <span><math><mtext>Ho</mtext><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><mrow><mi>Cat</mi></mrow><mo>)</mo></math></span>, the homotopy category of the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-functors.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107987"},"PeriodicalIF":0.7,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143887019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信