{"title":"纤维充足的方案","authors":"Yairon Cid-Ruiz , Ritvik Ramkumar","doi":"10.1016/j.jpaa.2025.108045","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the fiber-full scheme which can be seen as the parameter space that generalizes the Hilbert and Quot schemes by controlling the entire cohomological data. Let <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>⊂</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>→</mo><mi>S</mi></math></span> be a projective morphism and <span><math><mi>h</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo><mo>:</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be a fixed tuple of functions. The fiber-full scheme <span><math><msubsup><mrow><mi>Fib</mi></mrow><mrow><mi>F</mi><mo>/</mo><mi>X</mi><mo>/</mo><mi>S</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> is a fine moduli space parametrizing all quotients <span><math><mi>G</mi></math></span> of a fixed coherent sheaf <span><math><mi>F</mi></math></span> on <em>X</em> such that <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>(</mo><mi>ν</mi><mo>)</mo><mo>)</mo></mrow></math></span> is a locally free <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span>-module of rank equal to <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>ν</mi><mo>)</mo></math></span>. In other words, the fiber-full scheme controls the dimension of all cohomologies of all possible twistings, instead of just the Hilbert polynomial. We show that the fiber-full scheme is a quasi-projective <em>S</em>-scheme and a locally closed subscheme of its corresponding Quot scheme. In the context of applications, we demonstrate that the fiber-full scheme provides the natural parameter space for arithmetically Cohen-Macaulay and arithmetically Gorenstein schemes with fixed cohomological data, and for square-free Gröbner degenerations.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108045"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fiber-full scheme\",\"authors\":\"Yairon Cid-Ruiz , Ritvik Ramkumar\",\"doi\":\"10.1016/j.jpaa.2025.108045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce the fiber-full scheme which can be seen as the parameter space that generalizes the Hilbert and Quot schemes by controlling the entire cohomological data. Let <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>⊂</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>→</mo><mi>S</mi></math></span> be a projective morphism and <span><math><mi>h</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo><mo>:</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be a fixed tuple of functions. The fiber-full scheme <span><math><msubsup><mrow><mi>Fib</mi></mrow><mrow><mi>F</mi><mo>/</mo><mi>X</mi><mo>/</mo><mi>S</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> is a fine moduli space parametrizing all quotients <span><math><mi>G</mi></math></span> of a fixed coherent sheaf <span><math><mi>F</mi></math></span> on <em>X</em> such that <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>(</mo><mi>ν</mi><mo>)</mo><mo>)</mo></mrow></math></span> is a locally free <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span>-module of rank equal to <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>ν</mi><mo>)</mo></math></span>. In other words, the fiber-full scheme controls the dimension of all cohomologies of all possible twistings, instead of just the Hilbert polynomial. We show that the fiber-full scheme is a quasi-projective <em>S</em>-scheme and a locally closed subscheme of its corresponding Quot scheme. In the context of applications, we demonstrate that the fiber-full scheme provides the natural parameter space for arithmetically Cohen-Macaulay and arithmetically Gorenstein schemes with fixed cohomological data, and for square-free Gröbner degenerations.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 9\",\"pages\":\"Article 108045\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001847\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001847","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We introduce the fiber-full scheme which can be seen as the parameter space that generalizes the Hilbert and Quot schemes by controlling the entire cohomological data. Let be a projective morphism and be a fixed tuple of functions. The fiber-full scheme is a fine moduli space parametrizing all quotients of a fixed coherent sheaf on X such that is a locally free -module of rank equal to . In other words, the fiber-full scheme controls the dimension of all cohomologies of all possible twistings, instead of just the Hilbert polynomial. We show that the fiber-full scheme is a quasi-projective S-scheme and a locally closed subscheme of its corresponding Quot scheme. In the context of applications, we demonstrate that the fiber-full scheme provides the natural parameter space for arithmetically Cohen-Macaulay and arithmetically Gorenstein schemes with fixed cohomological data, and for square-free Gröbner degenerations.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.