{"title":"The Seshadri constants of tangent sheaves on toric varieties","authors":"Chih-Wei Chang","doi":"10.1016/j.jpaa.2025.108046","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the Seshadri constant <span><math><mi>ε</mi><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>;</mo><mi>p</mi><mo>)</mo></math></span> of the tangent sheaf <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> of a proper <span><math><mi>Q</mi></math></span>-factorial toric variety <em>X</em>. We show that <span><math><mi>ε</mi><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>;</mo><mn>1</mn><mo>)</mo><mo>></mo><mn>0</mn></math></span> if and only if the following statement holds true: if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> where each <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a positive real number and each <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the primitive generator of some ray in the fan Δ that defines <em>X</em>, then <span><math><mi>k</mi><mo>≥</mo><mi>dim</mi><mo></mo><mi>X</mi><mo>+</mo><mn>1</mn></math></span>. Based on the result, we show that a smooth projective toric variety <em>X</em> with <span><math><mi>ε</mi><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>;</mo><mi>p</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> for some <span><math><mi>p</mi><mo>∈</mo><mi>X</mi></math></span> is isomorphic to the projective space, confirming a special case of the conjecture proposed by M. Fulger and T. Murayama.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108046"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001859","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the Seshadri constant of the tangent sheaf of a proper -factorial toric variety X. We show that if and only if the following statement holds true: if where each is a positive real number and each is the primitive generator of some ray in the fan Δ that defines X, then . Based on the result, we show that a smooth projective toric variety X with for some is isomorphic to the projective space, confirming a special case of the conjecture proposed by M. Fulger and T. Murayama.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.