通过一般自由表示的约化群的基本维数

IF 0.8 2区 数学 Q2 MATHEMATICS
Sanghoon Baek, Yeongjong Kim
{"title":"通过一般自由表示的约化群的基本维数","authors":"Sanghoon Baek,&nbsp;Yeongjong Kim","doi":"10.1016/j.jpaa.2025.108044","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a simple method to compute upper bounds on the essential dimension of split reductive groups with finite or connected center by means of their generically free representations. Combining our upper bound with previously known lower bound, the exact value of the essential dimension is calculated for some types of reductive groups. As an application, we determine the essential dimension of a semisimple group of classical type or <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>, and its strict reductive envelope under certain conditions on its center. This extends previous works on simple simply connected groups of type <em>B</em> or <em>D</em> by Brosnan-Reichstein-Vistoli and Chernousov-Merkurjev, strict reductive envelopes of groups of type <em>A</em> by Cernele-Reichstein, and semisimple groups of type <em>B</em> by the authors to any classical type and type <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> in a uniform way.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108044"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Essentials dimension of reductive groups via generically free representations\",\"authors\":\"Sanghoon Baek,&nbsp;Yeongjong Kim\",\"doi\":\"10.1016/j.jpaa.2025.108044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We provide a simple method to compute upper bounds on the essential dimension of split reductive groups with finite or connected center by means of their generically free representations. Combining our upper bound with previously known lower bound, the exact value of the essential dimension is calculated for some types of reductive groups. As an application, we determine the essential dimension of a semisimple group of classical type or <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>, and its strict reductive envelope under certain conditions on its center. This extends previous works on simple simply connected groups of type <em>B</em> or <em>D</em> by Brosnan-Reichstein-Vistoli and Chernousov-Merkurjev, strict reductive envelopes of groups of type <em>A</em> by Cernele-Reichstein, and semisimple groups of type <em>B</em> by the authors to any classical type and type <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> in a uniform way.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 9\",\"pages\":\"Article 108044\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001835\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001835","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用中心有限或中心连通的分裂约群的一般自由表示,给出了计算其本质维数上界的一种简便方法。结合我们的上界和已知的下界,对某些类型的约化群计算了基本维数的精确值。作为应用,我们确定了经典型或E6的半单群的基本维数,以及在其中心一定条件下的严格约化包络。这将Brosnan-Reichstein-Vistoli和Chernousov-Merkurjev关于B型或D型单连通群的研究,Cernele-Reichstein关于A型群的严格约化包络,以及作者关于B型半单群的研究统一地推广到任何经典型和E6型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Essentials dimension of reductive groups via generically free representations
We provide a simple method to compute upper bounds on the essential dimension of split reductive groups with finite or connected center by means of their generically free representations. Combining our upper bound with previously known lower bound, the exact value of the essential dimension is calculated for some types of reductive groups. As an application, we determine the essential dimension of a semisimple group of classical type or E6, and its strict reductive envelope under certain conditions on its center. This extends previous works on simple simply connected groups of type B or D by Brosnan-Reichstein-Vistoli and Chernousov-Merkurjev, strict reductive envelopes of groups of type A by Cernele-Reichstein, and semisimple groups of type B by the authors to any classical type and type E6 in a uniform way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信