标准单项式理论在特征二上模Frobenius

IF 0.8 2区 数学 Q2 MATHEMATICS
Laura Casabella , Teresa Yu
{"title":"标准单项式理论在特征二上模Frobenius","authors":"Laura Casabella ,&nbsp;Teresa Yu","doi":"10.1016/j.jpaa.2025.108051","DOIUrl":null,"url":null,"abstract":"<div><div>Over a field of characteristic two, we develop a theory of standard monomials for polynomial rings modulo a Frobenius power of the maximal ideal generated by all variables. As a result, we obtain a filtration by modular <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-representations whose characters are given by particular truncated Schur polynomials, thus proving a conjecture by Gao–Raicu–VandeBogert in the characteristic two case.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108051"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standard monomial theory modulo Frobenius in characteristic two\",\"authors\":\"Laura Casabella ,&nbsp;Teresa Yu\",\"doi\":\"10.1016/j.jpaa.2025.108051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over a field of characteristic two, we develop a theory of standard monomials for polynomial rings modulo a Frobenius power of the maximal ideal generated by all variables. As a result, we obtain a filtration by modular <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-representations whose characters are given by particular truncated Schur polynomials, thus proving a conjecture by Gao–Raicu–VandeBogert in the characteristic two case.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 9\",\"pages\":\"Article 108051\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001902\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在一个特征为二的域上,我们建立了多项式环的标准单项式理论,对所有变量产生的最大理想的Frobenius幂进行模。结果,我们得到了一个由特定截断的Schur多项式给出特征的模gln表示的滤波,从而证明了Gao-Raicu-VandeBogert在两个特征情况下的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standard monomial theory modulo Frobenius in characteristic two
Over a field of characteristic two, we develop a theory of standard monomials for polynomial rings modulo a Frobenius power of the maximal ideal generated by all variables. As a result, we obtain a filtration by modular GLn-representations whose characters are given by particular truncated Schur polynomials, thus proving a conjecture by Gao–Raicu–VandeBogert in the characteristic two case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信