{"title":"有限维sl3模上无限秩模范畴的组合","authors":"Volodymyr Mazorchuk , Xiaoyu Zhu","doi":"10.1016/j.jpaa.2025.108054","DOIUrl":null,"url":null,"abstract":"<div><div>We determine the combinatorics of transitive module categories over the monoidal category of finite dimensional <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-modules which arise when acting by the latter monoidal category on arbitrary simple <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-modules. This gives us a family of eight graphs which can be viewed as <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-generalizations of the classical infinite Dynkin diagrams.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108054"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorics of infinite rank module categories over finite dimensional sl3-modules in Lie-algebraic context\",\"authors\":\"Volodymyr Mazorchuk , Xiaoyu Zhu\",\"doi\":\"10.1016/j.jpaa.2025.108054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We determine the combinatorics of transitive module categories over the monoidal category of finite dimensional <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-modules which arise when acting by the latter monoidal category on arbitrary simple <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-modules. This gives us a family of eight graphs which can be viewed as <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-generalizations of the classical infinite Dynkin diagrams.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 9\",\"pages\":\"Article 108054\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001938\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001938","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Combinatorics of infinite rank module categories over finite dimensional sl3-modules in Lie-algebraic context
We determine the combinatorics of transitive module categories over the monoidal category of finite dimensional -modules which arise when acting by the latter monoidal category on arbitrary simple -modules. This gives us a family of eight graphs which can be viewed as -generalizations of the classical infinite Dynkin diagrams.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.