Bimodules and universal enveloping algebras associated to SVOAs

IF 0.7 2区 数学 Q2 MATHEMATICS
Shun Xu
{"title":"Bimodules and universal enveloping algebras associated to SVOAs","authors":"Shun Xu","doi":"10.1016/j.jpaa.2025.108037","DOIUrl":null,"url":null,"abstract":"<div><div>For a vertex operator superalgebra <em>V</em> and <span><math><mi>n</mi><mo>,</mo><mi>m</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>V</mi><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denote the associative algebra, and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>V</mi><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denote the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodule, as constructed by W. Jiang and C. Jiang <span><span>[10]</span></span>, where <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> are specific subspaces of <em>V</em>. We introduce a novel representation-theoretic method for constructing subspaces <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of <em>V</em>, similar to our previous work <span><span>[8]</span></span>, and set <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. We demonstrate that <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> through a method that is notably simpler and more straightforward compared to the approach detailed in <span><span>[6]</span></span> (also see <span><span>[8]</span></span>). Moreover, we offer a simpler definition for the bimodules <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, contributing towards the resolution of a conjecture proposed by Dong and Jiang <span><span>[2]</span></span> regarding superalgebras. Additionally, we demonstrate that the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodule <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is a quotient of <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub></math></span>, where <span><math><mi>U</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denotes the universal enveloping algebra of <em>V</em>, employing a method distinct from <span><span>[6]</span></span> (see also <span><span>[8]</span></span>), which is unified and simpler.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108037"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001768","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a vertex operator superalgebra V and n,m(1/2)Z+, let An(V):=V/On(V) denote the associative algebra, and An,m(V):=V/On,m(V) denote the An(V)Am(V)-bimodule, as constructed by W. Jiang and C. Jiang [10], where On(V) and On,m(V) are specific subspaces of V. We introduce a novel representation-theoretic method for constructing subspaces On,m(V) of V, similar to our previous work [8], and set On(V)=On,n(V). We demonstrate that On,m(V)=On,m(V) and On(V)=On(V) through a method that is notably simpler and more straightforward compared to the approach detailed in [6] (also see [8]). Moreover, we offer a simpler definition for the bimodules An,m(V), contributing towards the resolution of a conjecture proposed by Dong and Jiang [2] regarding superalgebras. Additionally, we demonstrate that the An(V)Am(V)-bimodule An,m(V) is a quotient of U(V)nm, where U(V) denotes the universal enveloping algebra of V, employing a method distinct from [6] (see also [8]), which is unified and simpler.
与svoa相关的双模和泛包络代数
对于顶点算子超代数V和n,m∈(1/2)Z+,设An(V):=V/On(V)表示结合代数,An,m(V):=V/On,m(V)表示W. Jiang和C. Jiang[10]构造的An(V) - Am(V)-双模,其中On(V)和On,m(V)是V的特定子空间。我们引入了一种新的表示理论方法来构造V的子空间On,m(V),类似于我们之前的工作[8],集合On(V)=On,n(V)。我们通过一种方法证明了On,m(V)=On,m(V)和On(V)=On(V),与[6](也见[8])中详细的方法相比,该方法明显更简单,更直接。此外,我们对双模An,m(V)给出了一个更简单的定义,有助于解决Dong和Jiang[2]提出的关于超代数的猜想。另外,我们证明了An(V)−Am(V)-双模An,m(V)是U(V)n−m的商,其中U(V)表示V的全称包络代数,使用的方法不同于[6](参见[8]),它是统一的和更简单的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信