{"title":"与svoa相关的双模和泛包络代数","authors":"Shun Xu","doi":"10.1016/j.jpaa.2025.108037","DOIUrl":null,"url":null,"abstract":"<div><div>For a vertex operator superalgebra <em>V</em> and <span><math><mi>n</mi><mo>,</mo><mi>m</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>V</mi><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denote the associative algebra, and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>V</mi><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denote the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodule, as constructed by W. Jiang and C. Jiang <span><span>[10]</span></span>, where <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> are specific subspaces of <em>V</em>. We introduce a novel representation-theoretic method for constructing subspaces <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of <em>V</em>, similar to our previous work <span><span>[8]</span></span>, and set <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. We demonstrate that <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> through a method that is notably simpler and more straightforward compared to the approach detailed in <span><span>[6]</span></span> (also see <span><span>[8]</span></span>). Moreover, we offer a simpler definition for the bimodules <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, contributing towards the resolution of a conjecture proposed by Dong and Jiang <span><span>[2]</span></span> regarding superalgebras. Additionally, we demonstrate that the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodule <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is a quotient of <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub></math></span>, where <span><math><mi>U</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denotes the universal enveloping algebra of <em>V</em>, employing a method distinct from <span><span>[6]</span></span> (see also <span><span>[8]</span></span>), which is unified and simpler.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108037"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimodules and universal enveloping algebras associated to SVOAs\",\"authors\":\"Shun Xu\",\"doi\":\"10.1016/j.jpaa.2025.108037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a vertex operator superalgebra <em>V</em> and <span><math><mi>n</mi><mo>,</mo><mi>m</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>V</mi><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denote the associative algebra, and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>V</mi><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denote the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodule, as constructed by W. Jiang and C. Jiang <span><span>[10]</span></span>, where <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> are specific subspaces of <em>V</em>. We introduce a novel representation-theoretic method for constructing subspaces <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of <em>V</em>, similar to our previous work <span><span>[8]</span></span>, and set <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. We demonstrate that <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> through a method that is notably simpler and more straightforward compared to the approach detailed in <span><span>[6]</span></span> (also see <span><span>[8]</span></span>). Moreover, we offer a simpler definition for the bimodules <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, contributing towards the resolution of a conjecture proposed by Dong and Jiang <span><span>[2]</span></span> regarding superalgebras. Additionally, we demonstrate that the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>-bimodule <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is a quotient of <span><math><mi>U</mi><msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub></math></span>, where <span><math><mi>U</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> denotes the universal enveloping algebra of <em>V</em>, employing a method distinct from <span><span>[6]</span></span> (see also <span><span>[8]</span></span>), which is unified and simpler.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 9\",\"pages\":\"Article 108037\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001768\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001768","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bimodules and universal enveloping algebras associated to SVOAs
For a vertex operator superalgebra V and , let denote the associative algebra, and denote the -bimodule, as constructed by W. Jiang and C. Jiang [10], where and are specific subspaces of V. We introduce a novel representation-theoretic method for constructing subspaces of V, similar to our previous work [8], and set . We demonstrate that and through a method that is notably simpler and more straightforward compared to the approach detailed in [6] (also see [8]). Moreover, we offer a simpler definition for the bimodules , contributing towards the resolution of a conjecture proposed by Dong and Jiang [2] regarding superalgebras. Additionally, we demonstrate that the -bimodule is a quotient of , where denotes the universal enveloping algebra of V, employing a method distinct from [6] (see also [8]), which is unified and simpler.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.