Gelfand-Fuks cohomology of vector fields on algebraic varieties

IF 0.8 2区 数学 Q2 MATHEMATICS
Yuly Billig, Kathlyn Dykes
{"title":"Gelfand-Fuks cohomology of vector fields on algebraic varieties","authors":"Yuly Billig,&nbsp;Kathlyn Dykes","doi":"10.1016/j.jpaa.2025.108039","DOIUrl":null,"url":null,"abstract":"<div><div>For an affine algebraic variety, we introduce algebraic Gelfand-Fuks cohomology of polynomial vector fields with coefficients in differentiable <em>AV</em>-modules. Its complex is given by cochains that are differential operators in the sense of Grothendieck. Using the jets of vector fields, we compute this cohomology for varieties with uniformizing parameters. We prove that in this case, Gelfand-Fuks cohomology with coefficients in a tensor module decomposes as a tensor product of the de Rham cohomology of the variety and the cohomology of the Lie algebra of vector fields on affine space, vanishing at the origin. We explicitly compute this cohomology for affine space, the torus, and Krichever-Novikov algebras.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108039"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001781","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an affine algebraic variety, we introduce algebraic Gelfand-Fuks cohomology of polynomial vector fields with coefficients in differentiable AV-modules. Its complex is given by cochains that are differential operators in the sense of Grothendieck. Using the jets of vector fields, we compute this cohomology for varieties with uniformizing parameters. We prove that in this case, Gelfand-Fuks cohomology with coefficients in a tensor module decomposes as a tensor product of the de Rham cohomology of the variety and the cohomology of the Lie algebra of vector fields on affine space, vanishing at the origin. We explicitly compute this cohomology for affine space, the torus, and Krichever-Novikov algebras.
代数变异上向量场的Gelfand-Fuks上同调
对于一类仿射代数变量,我们引入了可微av -模中带系数的多项式向量场的代数Gelfand-Fuks上同调。它的复形由协链给出,协链是格罗滕迪克意义上的微分算子。利用向量场的射流,我们计算了具有均匀化参数的变异的上同调。我们证明了在这种情况下,张量模中带系数的Gelfand-Fuks上同调分解为仿射空间上向量场的变异的de Rham上同调和李代数的上同调的张量积,在原点消失。我们明确地计算了仿射空间、环面和krichhever - novikov代数的上同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信