Journal of the American Mathematical Society最新文献

筛选
英文 中文
Plancherel theory for real spherical spaces: Construction of the Bernstein morphisms 实球面空间的Plancherel理论:Bernstein态射的构造
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-07-19 DOI: 10.1090/jams/971
P. Delorme, F. Knop, Bernhard Krotz, H. Schlichtkrull
{"title":"Plancherel theory for real spherical spaces: Construction of the Bernstein morphisms","authors":"P. Delorme, F. Knop, Bernhard Krotz, H. Schlichtkrull","doi":"10.1090/jams/971","DOIUrl":"https://doi.org/10.1090/jams/971","url":null,"abstract":"<p>This paper lays the foundation for Plancherel theory on real spherical spaces <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z equals upper G slash upper H\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>H</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Z=G/H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, namely it provides the decomposition of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper Z right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L^2(Z)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> into different series of representations via Bernstein morphisms. These series are parametrized by subsets of spherical roots which determine the fine geometry of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z\">\u0000 <mml:semantics>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Z</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> at infinity. In particular, we obtain a generalization of the Maass-Selberg relations. As a corollary we obtain a partial geometric characterization of the discrete spectrum: <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper Z right-parenthesis Subscript normal d normal i normal s normal c Baseline not-equals normal empty-set\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">d</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">i</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">s</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">c</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo>≠<!-- ≠ --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∅<!-- ∅ --></mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L^2(Z)_{mathrm {disc}}neq emptyset</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/Math","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46479542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
On the measure of maximal entropy for finite horizon Sinai Billiard maps 有限视界西奈台球图的最大熵测度
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-07-06 DOI: 10.1090/jams/939
V. Baladi, Mark F. Demers
{"title":"On the measure of maximal entropy for finite horizon Sinai Billiard maps","authors":"V. Baladi, Mark F. Demers","doi":"10.1090/jams/939","DOIUrl":"https://doi.org/10.1090/jams/939","url":null,"abstract":"<p>The Sinai billiard map <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\u0000 <mml:semantics>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> on the two-torus, i.e., the periodic Lorentz gas, is a discontinuous map. Assuming finite horizon, we propose a definition <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Subscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>h</mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">h_*</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for the topological entropy of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\u0000 <mml:semantics>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We prove that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Subscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>h</mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">h_*</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is not smaller than the value given by the variational principle, and that it is equal to the definitions of Bowen using spanning or separating sets. Under a mild condition of sparse recurrence to the singularities, we get more: First, using a transfer operator acting on a space of anisotropic distributions, we construct an invariant probability measure <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mu _*</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of maximal entropy for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\u0000 <mml:semantics>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> (i.e., <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Subscript mu Sub Subscript asterisk Baseline left-parenthesis upper T right-parenthesis equals h Subscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>h</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:msub>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msub>\u0000 </mml:","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46885793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
On the Ramanujan conjecture for automorphic forms over function fields I. Geometry 函数域上自同构形式的Ramanujan猜想1 .几何
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-05-30 DOI: 10.1090/jams/968
W. Sawin, Nicolas Templier
{"title":"On the Ramanujan conjecture for automorphic forms over function fields I. Geometry","authors":"W. Sawin, Nicolas Templier","doi":"10.1090/jams/968","DOIUrl":"https://doi.org/10.1090/jams/968","url":null,"abstract":"Let \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000 be a split semisimple group over a function field. We prove the temperedness at unramified places of automorphic representations of \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000, subject to a local assumption at one place, stronger than supercuspidality, and assuming the existence of cyclic base change with good properties. Our method relies on the geometry of \u0000\u0000 \u0000 \u0000 Bun\u0000 G\u0000 \u0000 operatorname {Bun}_G\u0000 \u0000\u0000. It is independent of the work of Lafforgue on the global Langlands correspondence.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43470487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Tropical curves, graph complexes, and top weight cohomology of ℳ_{ℊ} _{ℊ}的热带曲线、图复形和顶权上同
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-05-25 DOI: 10.1090/jams/965
M. Chan, Søren Galatius, S. Payne
{"title":"Tropical curves, graph complexes, and top weight cohomology of ℳ_{ℊ}","authors":"M. Chan, Søren Galatius, S. Payne","doi":"10.1090/jams/965","DOIUrl":"https://doi.org/10.1090/jams/965","url":null,"abstract":"<p>We study the topology of a space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta Subscript g\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>g</mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">Delta _{g}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> parametrizing stable tropical curves of genus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\u0000 <mml:semantics>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with volume <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\">\u0000 <mml:semantics>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, showing that its reduced rational homology is canonically identified with both the top weight cohomology of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M Subscript g\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>g</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {M}_g</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and also with the genus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\u0000 <mml:semantics>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> part of the homology of Kontsevich’s graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck–Teichmüller Lie algebra, we deduce that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 4 g minus 6 Baseline left-parenthesis script upper M Subscript g Baseline semicolon double-struck upper Q right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>4</mml:mn>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>6</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>g</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>;</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46212536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 64
Algebraicity of the metric tangent cones and equivariant K-stability 度量切锥的代数性与等变k稳定性
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-05-09 DOI: 10.1090/JAMS/974
Chi Li, Xiaowei Wang, Chenyang Xu
{"title":"Algebraicity of the metric tangent cones and equivariant K-stability","authors":"Chi Li, Xiaowei Wang, Chenyang Xu","doi":"10.1090/JAMS/974","DOIUrl":"https://doi.org/10.1090/JAMS/974","url":null,"abstract":"We prove two new results on the \u0000\u0000 \u0000 K\u0000 K\u0000 \u0000\u0000-polystability of \u0000\u0000 \u0000 \u0000 Q\u0000 \u0000 mathbb {Q}\u0000 \u0000\u0000-Fano varieties based on purely algebro-geometric arguments. The first one says that any \u0000\u0000 \u0000 K\u0000 K\u0000 \u0000\u0000-semistable log Fano cone has a special degeneration to a uniquely determined \u0000\u0000 \u0000 K\u0000 K\u0000 \u0000\u0000-polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, \u0000\u0000 \u0000 K\u0000 K\u0000 \u0000\u0000-polystability is equivalent to equivariant \u0000\u0000 \u0000 K\u0000 K\u0000 \u0000\u0000-polystability, that is, to check \u0000\u0000 \u0000 K\u0000 K\u0000 \u0000\u0000-polystability, it is sufficient to check special test configurations which are equivariant under the torus action.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49019611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 81
Large genus asymptotics for volumes of strata of abelian differentials 阿贝尔微分地层体积的大属渐近性
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-04-15 DOI: 10.1090/jams/947
A. Aggarwal
{"title":"Large genus asymptotics for volumes of strata of abelian differentials","authors":"A. Aggarwal","doi":"10.1090/jams/947","DOIUrl":"https://doi.org/10.1090/jams/947","url":null,"abstract":"<p>In this paper we consider the large genus asymptotics for Masur-Veech volumes of arbitrary strata of Abelian differentials. Through a combinatorial analysis of an algorithm proposed in 2002 by Eskin-Okounkov to exactly evaluate these quantities, we show that the volume <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu 1 left-parenthesis script upper H 1 left-parenthesis m right-parenthesis right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>ν<!-- ν --></mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">nu _1 big ( mathcal {H}_1 (m) big )</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of a stratum indexed by a partition <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals left-parenthesis m 1 comma m 2 comma ellipsis comma m Subscript n Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mo>…<!-- … --></mml:mo>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">m = (m_1, m_2, ldots , m_n)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 4 plus o left-parenthesis 1 right-parenthesis right-parenthesis product Underscript i equals 1 Overscript n Endscripts left-parenthesis m Subscript i Baseline plus 1 right-parenthesis Superscript negative 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mn>4</mml:mn>\u0000 <mml:mo>+</mml:mo","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/947","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44476817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Positive entropy actions of countable groups factor onto Bernoulli shifts 可数群的正熵作用影响伯努利位移
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-04-14 DOI: 10.1090/JAMS/931
Brandon Seward
{"title":"Positive entropy actions of countable groups factor onto Bernoulli shifts","authors":"Brandon Seward","doi":"10.1090/JAMS/931","DOIUrl":"https://doi.org/10.1090/JAMS/931","url":null,"abstract":"We prove that if a free ergodic action of a countably infinite group has positive Rokhlin entropy (or, less generally, positive sofic entropy), then it factors onto all Bernoulli shifts of lesser or equal entropy. This extends to all countably infinite groups the well-known Sinai factor theorem from classical entropy theory.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/931","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45545213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Catalan functions and 𝑘-Schur positivity 加泰罗尼亚函数和𝑘-Schur阳性
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-04-10 DOI: 10.1090/JAMS/921
J. Blasiak, J. Morse, Anna Y. Pun, D. Summers
{"title":"Catalan functions and 𝑘-Schur positivity","authors":"J. Blasiak, J. Morse, Anna Y. Pun, D. Summers","doi":"10.1090/JAMS/921","DOIUrl":"https://doi.org/10.1090/JAMS/921","url":null,"abstract":"We prove that graded \u0000\u0000 \u0000 k\u0000 k\u0000 \u0000\u0000-Schur functions are \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-equivariant Euler characteristics of vector bundles on the flag variety, settling a conjecture of Chen-Haiman. We expose a new miraculous shift invariance property of the graded \u0000\u0000 \u0000 k\u0000 k\u0000 \u0000\u0000-Schur functions and resolve the Schur positivity and \u0000\u0000 \u0000 k\u0000 k\u0000 \u0000\u0000-branching conjectures in the strongest possible terms by providing direct combinatorial formulas using strong marked tableaux.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/921","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42575475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Categorical joins 分类连接
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-03-31 DOI: 10.1090/jams/963
A. Kuznetsov, Alexander Perry
{"title":"Categorical joins","authors":"A. Kuznetsov, Alexander Perry","doi":"10.1090/jams/963","DOIUrl":"https://doi.org/10.1090/jams/963","url":null,"abstract":"We introduce the notion of a categorical join, which can be thought of as a categorification of the classical join of two projective varieties. This notion is in the spirit of homological projective duality, which categorifies classical projective duality. Our main theorem says that the homological projective dual category of the categorical join is naturally equivalent to the categorical join of the homological projective dual categories. This categorifies the classical version of this assertion and has many applications, including a nonlinear version of the main theorem of homological projective duality.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47024313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Tame topology of arithmetic quotients and algebraicity of Hodge loci 算术商的Tame拓扑与Hodge轨迹的代数性
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2018-03-26 DOI: 10.1090/jams/952
B. Klingler
{"title":"Tame topology of arithmetic quotients and algebraicity of Hodge loci","authors":"B. Klingler","doi":"10.1090/jams/952","DOIUrl":"https://doi.org/10.1090/jams/952","url":null,"abstract":"<p>In this paper we prove the following results:</p> <p><inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We show that any arithmetic quotient of a homogeneous space admits a natural real semi-algebraic structure for which its Hecke correspondences are semi-algebraic. A particularly important example is given by Hodge varieties, which parametrize pure polarized integral Hodge structures.</p> <p><inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We prove that the period map associated to any pure polarized variation of integral Hodge structures <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper V\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">V</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {V}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a smooth complex quasi-projective variety <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is definable with respect to an o-minimal structure on the relevant Hodge variety induced by the above semi-algebraic structure.</p> <p><inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> As a corollary of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of Peterzil-Starchenko’s o-minimal Chow theorem we recover that the Hodge locus of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http:/","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/952","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46557519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信