函数域上自同构形式的Ramanujan猜想1 .几何

IF 3.5 1区 数学 Q1 MATHEMATICS
W. Sawin, Nicolas Templier
{"title":"函数域上自同构形式的Ramanujan猜想1 .几何","authors":"W. Sawin, Nicolas Templier","doi":"10.1090/jams/968","DOIUrl":null,"url":null,"abstract":"Let \n\n \n G\n G\n \n\n be a split semisimple group over a function field. We prove the temperedness at unramified places of automorphic representations of \n\n \n G\n G\n \n\n, subject to a local assumption at one place, stronger than supercuspidality, and assuming the existence of cyclic base change with good properties. Our method relies on the geometry of \n\n \n \n Bun\n G\n \n \\operatorname {Bun}_G\n \n\n. It is independent of the work of Lafforgue on the global Langlands correspondence.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the Ramanujan conjecture for automorphic forms over function fields I. Geometry\",\"authors\":\"W. Sawin, Nicolas Templier\",\"doi\":\"10.1090/jams/968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\n\\n \\n G\\n G\\n \\n\\n be a split semisimple group over a function field. We prove the temperedness at unramified places of automorphic representations of \\n\\n \\n G\\n G\\n \\n\\n, subject to a local assumption at one place, stronger than supercuspidality, and assuming the existence of cyclic base change with good properties. Our method relies on the geometry of \\n\\n \\n \\n Bun\\n G\\n \\n \\\\operatorname {Bun}_G\\n \\n\\n. It is independent of the work of Lafforgue on the global Langlands correspondence.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/968\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/968","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

设G G是函数域上的一个分裂半单群。我们证明了G G的自同构表示在非分枝处的调和性,在一个地方服从一个局部假设,强于超可混性,并假设存在具有良好性质的循环基变。我们的方法依赖于Bun G\运算符名称的几何结构{Bun}_G。它独立于Lafforgue在全球Langlands通信方面的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Ramanujan conjecture for automorphic forms over function fields I. Geometry
Let G G be a split semisimple group over a function field. We prove the temperedness at unramified places of automorphic representations of G G , subject to a local assumption at one place, stronger than supercuspidality, and assuming the existence of cyclic base change with good properties. Our method relies on the geometry of Bun G \operatorname {Bun}_G . It is independent of the work of Lafforgue on the global Langlands correspondence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信