Algebraicity of the metric tangent cones and equivariant K-stability

IF 3.5 1区 数学 Q1 MATHEMATICS
Chi Li, Xiaowei Wang, Chenyang Xu
{"title":"Algebraicity of the metric tangent cones and equivariant K-stability","authors":"Chi Li, Xiaowei Wang, Chenyang Xu","doi":"10.1090/JAMS/974","DOIUrl":null,"url":null,"abstract":"We prove two new results on the \n\n \n K\n K\n \n\n-polystability of \n\n \n \n Q\n \n \\mathbb {Q}\n \n\n-Fano varieties based on purely algebro-geometric arguments. The first one says that any \n\n \n K\n K\n \n\n-semistable log Fano cone has a special degeneration to a uniquely determined \n\n \n K\n K\n \n\n-polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, \n\n \n K\n K\n \n\n-polystability is equivalent to equivariant \n\n \n K\n K\n \n\n-polystability, that is, to check \n\n \n K\n K\n \n\n-polystability, it is sufficient to check special test configurations which are equivariant under the torus action.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/974","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 81

Abstract

We prove two new results on the K K -polystability of Q \mathbb {Q} -Fano varieties based on purely algebro-geometric arguments. The first one says that any K K -semistable log Fano cone has a special degeneration to a uniquely determined K K -polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, K K -polystability is equivalent to equivariant K K -polystability, that is, to check K K -polystability, it is sufficient to check special test configurations which are equivariant under the torus action.
度量切锥的代数性与等变k稳定性
基于纯代数几何变元,我们证明了Q\mathbb{Q}-Fano变种的K-多稳定性的两个新结果。第一种观点认为,任何K-半稳定log Fano锥都有一个特殊的退化为唯一确定的K-多稳定log Fano-锥。作为推论,我们将其与微分几何结果相结合,完成了唐纳森-孙猜想的证明,该猜想认为,在Kähler-Einstein-Fano流形的Gromov-Hausdorff极限上出现的任何点的度量切锥仅取决于奇点的代数结构。第二个结果表明,对于任何具有环面作用的log Fano变种,K-多稳态等价于等变K-多稳定性,也就是说,为了检验K-多稳定,检验在环面作用下是等变的特殊测试配置就足够了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信