{"title":"算术商的Tame拓扑与Hodge轨迹的代数性","authors":"B. Klingler","doi":"10.1090/jams/952","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove the following results:</p> <p><inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We show that any arithmetic quotient of a homogeneous space admits a natural real semi-algebraic structure for which its Hecke correspondences are semi-algebraic. A particularly important example is given by Hodge varieties, which parametrize pure polarized integral Hodge structures.</p> <p><inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We prove that the period map associated to any pure polarized variation of integral Hodge structures <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper V\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">V</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {V}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a smooth complex quasi-projective variety <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is definable with respect to an o-minimal structure on the relevant Hodge variety induced by the above semi-algebraic structure.</p> <p><inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> As a corollary of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of Peterzil-Starchenko’s o-minimal Chow theorem we recover that the Hodge locus of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper S comma double-struck upper V right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">V</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(S, \\mathbb {V})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a countable union of algebraic subvarieties of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a result originally due to Cattani-Deligne-Kaplan. Our approach simplifies the proof of Cattani-Deligne-Kaplan, as it does not use the full power of the difficult multivariable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper L 2\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SL_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-orbit theorem of Cattani-Kaplan-Schmid.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/952","citationCount":"52","resultStr":"{\"title\":\"Tame topology of arithmetic quotients and algebraicity of Hodge loci\",\"authors\":\"B. Klingler\",\"doi\":\"10.1090/jams/952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we prove the following results:</p> <p><inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We show that any arithmetic quotient of a homogeneous space admits a natural real semi-algebraic structure for which its Hecke correspondences are semi-algebraic. A particularly important example is given by Hodge varieties, which parametrize pure polarized integral Hodge structures.</p> <p><inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We prove that the period map associated to any pure polarized variation of integral Hodge structures <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper V\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">V</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {V}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a smooth complex quasi-projective variety <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S\\\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is definable with respect to an o-minimal structure on the relevant Hodge variety induced by the above semi-algebraic structure.</p> <p><inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> As a corollary of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of Peterzil-Starchenko’s o-minimal Chow theorem we recover that the Hodge locus of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper S comma double-struck upper V right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">V</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(S, \\\\mathbb {V})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a countable union of algebraic subvarieties of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S\\\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a result originally due to Cattani-Deligne-Kaplan. Our approach simplifies the proof of Cattani-Deligne-Kaplan, as it does not use the full power of the difficult multivariable <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S upper L 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">SL_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-orbit theorem of Cattani-Kaplan-Schmid.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/952\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/952\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/952","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Tame topology of arithmetic quotients and algebraicity of Hodge loci
In this paper we prove the following results:
1)1) We show that any arithmetic quotient of a homogeneous space admits a natural real semi-algebraic structure for which its Hecke correspondences are semi-algebraic. A particularly important example is given by Hodge varieties, which parametrize pure polarized integral Hodge structures.
2)2) We prove that the period map associated to any pure polarized variation of integral Hodge structures V\mathbb {V} on a smooth complex quasi-projective variety SS is definable with respect to an o-minimal structure on the relevant Hodge variety induced by the above semi-algebraic structure.
3)3) As a corollary of 2)2) and of Peterzil-Starchenko’s o-minimal Chow theorem we recover that the Hodge locus of (S,V)(S, \mathbb {V}) is a countable union of algebraic subvarieties of SS, a result originally due to Cattani-Deligne-Kaplan. Our approach simplifies the proof of Cattani-Deligne-Kaplan, as it does not use the full power of the difficult multivariable SL2SL_2-orbit theorem of Cattani-Kaplan-Schmid.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.