加泰罗尼亚函数和𝑘-Schur阳性

IF 3.5 1区 数学 Q1 MATHEMATICS
J. Blasiak, J. Morse, Anna Y. Pun, D. Summers
{"title":"加泰罗尼亚函数和𝑘-Schur阳性","authors":"J. Blasiak, J. Morse, Anna Y. Pun, D. Summers","doi":"10.1090/JAMS/921","DOIUrl":null,"url":null,"abstract":"We prove that graded \n\n \n k\n k\n \n\n-Schur functions are \n\n \n G\n G\n \n\n-equivariant Euler characteristics of vector bundles on the flag variety, settling a conjecture of Chen-Haiman. We expose a new miraculous shift invariance property of the graded \n\n \n k\n k\n \n\n-Schur functions and resolve the Schur positivity and \n\n \n k\n k\n \n\n-branching conjectures in the strongest possible terms by providing direct combinatorial formulas using strong marked tableaux.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/921","citationCount":"12","resultStr":"{\"title\":\"Catalan functions and 𝑘-Schur positivity\",\"authors\":\"J. Blasiak, J. Morse, Anna Y. Pun, D. Summers\",\"doi\":\"10.1090/JAMS/921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that graded \\n\\n \\n k\\n k\\n \\n\\n-Schur functions are \\n\\n \\n G\\n G\\n \\n\\n-equivariant Euler characteristics of vector bundles on the flag variety, settling a conjecture of Chen-Haiman. We expose a new miraculous shift invariance property of the graded \\n\\n \\n k\\n k\\n \\n\\n-Schur functions and resolve the Schur positivity and \\n\\n \\n k\\n k\\n \\n\\n-branching conjectures in the strongest possible terms by providing direct combinatorial formulas using strong marked tableaux.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAMS/921\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/921\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/921","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

证明了分次k-舒尔函数是旗变上向量丛的G-等变Euler特征,解决了陈海曼的一个猜想。我们揭示了分次k k-Schur函数的一个新的奇迹移位不变性,并通过使用强标记表提供直接组合公式,以尽可能强的项解决了Schur正性和k k-分支猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalan functions and 𝑘-Schur positivity
We prove that graded k k -Schur functions are G G -equivariant Euler characteristics of vector bundles on the flag variety, settling a conjecture of Chen-Haiman. We expose a new miraculous shift invariance property of the graded k k -Schur functions and resolve the Schur positivity and k k -branching conjectures in the strongest possible terms by providing direct combinatorial formulas using strong marked tableaux.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信