A. Aggarwal
下载PDF
{"title":"阿贝尔微分地层体积的大属渐近性","authors":"A. Aggarwal","doi":"10.1090/jams/947","DOIUrl":null,"url":null,"abstract":"<p>In this paper we consider the large genus asymptotics for Masur-Veech volumes of arbitrary strata of Abelian differentials. Through a combinatorial analysis of an algorithm proposed in 2002 by Eskin-Okounkov to exactly evaluate these quantities, we show that the volume <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu 1 left-parenthesis script upper H 1 left-parenthesis m right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\nu _1 \\big ( \\mathcal {H}_1 (m) \\big )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a stratum indexed by a partition <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals left-parenthesis m 1 comma m 2 comma ellipsis comma m Subscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m = (m_1, m_2, \\ldots , m_n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 4 plus o left-parenthesis 1 right-parenthesis right-parenthesis product Underscript i equals 1 Overscript n Endscripts left-parenthesis m Subscript i Baseline plus 1 right-parenthesis Superscript negative 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mn>4</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:munderover>\n <mml:mo>∏<!-- ∏ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:munderover>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\big ( 4 + o(1) \\big ) \\prod _{i = 1}^n (m_i + 1)^{-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 g minus 2 equals sigma-summation Underscript i equals 1 Overscript n Endscripts m Subscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo>=</mml:mo>\n <mml:munderover>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:munderover>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2g - 2 = \\sum _{i = 1}^n m_i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> tends to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This confirms a prediction of Eskin-Zorich and generalizes some of the recent results of Chen-Möller-Zagier and Sauvaget, who established these limiting statements in the special cases <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals 1 Superscript 2 g minus 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m = 1^{2g - 2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals left-parenthesis 2 g minus 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m = (2g - 2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, respectively.</p>\n\n<p>We also include an appendix by Anton Zorich that uses our main result to deduce the large genus asymptotics for Siegel-Veech constants that count certain types of saddle connections.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/947","citationCount":"18","resultStr":"{\"title\":\"Large genus asymptotics for volumes of strata of abelian differentials\",\"authors\":\"A. Aggarwal\",\"doi\":\"10.1090/jams/947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we consider the large genus asymptotics for Masur-Veech volumes of arbitrary strata of Abelian differentials. Through a combinatorial analysis of an algorithm proposed in 2002 by Eskin-Okounkov to exactly evaluate these quantities, we show that the volume <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu 1 left-parenthesis script upper H 1 left-parenthesis m right-parenthesis right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu _1 \\\\big ( \\\\mathcal {H}_1 (m) \\\\big )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of a stratum indexed by a partition <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m equals left-parenthesis m 1 comma m 2 comma ellipsis comma m Subscript n Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>m</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>m</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>m</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:mo>…<!-- … --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>m</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m = (m_1, m_2, \\\\ldots , m_n)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 4 plus o left-parenthesis 1 right-parenthesis right-parenthesis product Underscript i equals 1 Overscript n Endscripts left-parenthesis m Subscript i Baseline plus 1 right-parenthesis Superscript negative 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:mn>4</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mi>o</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:munderover>\\n <mml:mo>∏<!-- ∏ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:munderover>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>m</mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\big ( 4 + o(1) \\\\big ) \\\\prod _{i = 1}^n (m_i + 1)^{-1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, as <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 g minus 2 equals sigma-summation Underscript i equals 1 Overscript n Endscripts m Subscript i\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo>=</mml:mo>\\n <mml:munderover>\\n <mml:mo>∑<!-- ∑ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:munderover>\\n <mml:msub>\\n <mml:mi>m</mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2g - 2 = \\\\sum _{i = 1}^n m_i</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> tends to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal infinity\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This confirms a prediction of Eskin-Zorich and generalizes some of the recent results of Chen-Möller-Zagier and Sauvaget, who established these limiting statements in the special cases <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m equals 1 Superscript 2 g minus 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>m</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msup>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m = 1^{2g - 2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m equals left-parenthesis 2 g minus 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>m</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m = (2g - 2)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, respectively.</p>\\n\\n<p>We also include an appendix by Anton Zorich that uses our main result to deduce the large genus asymptotics for Siegel-Veech constants that count certain types of saddle connections.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/947\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/947\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/947","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18
引用
批量引用