{"title":"_{ℊ}的热带曲线、图复形和顶权上同","authors":"M. Chan, Søren Galatius, S. Payne","doi":"10.1090/jams/965","DOIUrl":null,"url":null,"abstract":"<p>We study the topology of a space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta Subscript g\">\n <mml:semantics>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\Delta _{g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> parametrizing stable tropical curves of genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with volume <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\">\n <mml:semantics>\n <mml:mn>1</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, showing that its reduced rational homology is canonically identified with both the top weight cohomology of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M Subscript g\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mi>g</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and also with the genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> part of the homology of Kontsevich’s graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck–Teichmüller Lie algebra, we deduce that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 4 g minus 6 Baseline left-parenthesis script upper M Subscript g Baseline semicolon double-struck upper Q right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>4</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>6</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mi>g</mml:mi>\n </mml:msub>\n <mml:mo>;</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^{4g-6}(\\mathcal {M}_g;\\mathbb {Q})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is nonzero for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g equals 5\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>5</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g=5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 7\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>7</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g \\geq 7</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and in fact its dimension grows at least exponentially in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This disproves a recent conjecture of Church, Farb, and Putman as well as an older, more general conjecture of Kontsevich. We also give an independent proof of another theorem of Willwacher, that homology of the graph complex vanishes in negative degrees.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Tropical curves, graph complexes, and top weight cohomology of ℳ_{ℊ}\",\"authors\":\"M. Chan, Søren Galatius, S. Payne\",\"doi\":\"10.1090/jams/965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the topology of a space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta Subscript g\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta _{g}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> parametrizing stable tropical curves of genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with volume <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1\\\">\\n <mml:semantics>\\n <mml:mn>1</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, showing that its reduced rational homology is canonically identified with both the top weight cohomology of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M Subscript g\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mi>g</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {M}_g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and also with the genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> part of the homology of Kontsevich’s graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck–Teichmüller Lie algebra, we deduce that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 4 g minus 6 Baseline left-parenthesis script upper M Subscript g Baseline semicolon double-struck upper Q right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>4</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>6</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mi>g</mml:mi>\\n </mml:msub>\\n <mml:mo>;</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^{4g-6}(\\\\mathcal {M}_g;\\\\mathbb {Q})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is nonzero for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g equals 3\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g=3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g equals 5\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>5</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g=5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g greater-than-or-equal-to 7\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>7</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g \\\\geq 7</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and in fact its dimension grows at least exponentially in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This disproves a recent conjecture of Church, Farb, and Putman as well as an older, more general conjecture of Kontsevich. We also give an independent proof of another theorem of Willwacher, that homology of the graph complex vanishes in negative degrees.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/965\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/965","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 64
摘要
研究了空间Δ g \Delta _g{的拓扑结构,证明了其简化有理同调与M g }\mathcal M_g{的顶权上同调和Kontsevich图复调中g g的部分同调是正则化的。利用Willwacher关于此图复形与grothendieck - teichm ller李代数的一个定理,我们推导出H 4 g−6 (M g;Q) H^4g}-6({}\mathcal M_g{;}\mathbb Q){对于}g=3 g=3, g=5 g=5, g≥7 g \geq 7是非零的,事实上它的维数在g中至少呈指数增长。这推翻了Church、Farb和Putman最近的一个猜想,也推翻了Kontsevich一个更古老、更普遍的猜想。我们还独立证明了Willwacher的另一个定理,即复图的同调在负次域中消失。
Tropical curves, graph complexes, and top weight cohomology of ℳ_{ℊ}
We study the topology of a space Δg\Delta _{g} parametrizing stable tropical curves of genus gg with volume 11, showing that its reduced rational homology is canonically identified with both the top weight cohomology of Mg\mathcal {M}_g and also with the genus gg part of the homology of Kontsevich’s graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck–Teichmüller Lie algebra, we deduce that H4g−6(Mg;Q)H^{4g-6}(\mathcal {M}_g;\mathbb {Q}) is nonzero for g=3g=3, g=5g=5, and g≥7g \geq 7, and in fact its dimension grows at least exponentially in gg. This disproves a recent conjecture of Church, Farb, and Putman as well as an older, more general conjecture of Kontsevich. We also give an independent proof of another theorem of Willwacher, that homology of the graph complex vanishes in negative degrees.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.