Network-Computation in Neural Systems最新文献

筛选
英文 中文
Comparative performance analysis of Boruta, SHAP, and Borutashap for disease diagnosis: A study with multiple machine learning algorithms. 用于疾病诊断的 Boruta、SHAP 和 Borutashap 的性能比较分析:使用多种机器学习算法的研究。
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-03-21 DOI: 10.1080/0954898X.2024.2331506
Chukwuebuka Joseph Ejiyi, Zhen Qin, Chiagoziem Chima Ukwuoma, Grace Ugochi Nneji, Happy Nkanta Monday, Makuachukwu Bennedith Ejiyi, Thomas Ugochukwu Ejiyi, Uchenna Okechukwu, Olusola O Bamisile
{"title":"Comparative performance analysis of Boruta, SHAP, and Borutashap for disease diagnosis: A study with multiple machine learning algorithms.","authors":"Chukwuebuka Joseph Ejiyi, Zhen Qin, Chiagoziem Chima Ukwuoma, Grace Ugochi Nneji, Happy Nkanta Monday, Makuachukwu Bennedith Ejiyi, Thomas Ugochukwu Ejiyi, Uchenna Okechukwu, Olusola O Bamisile","doi":"10.1080/0954898X.2024.2331506","DOIUrl":"10.1080/0954898X.2024.2331506","url":null,"abstract":"<p><p>Interpretable machine learning models are instrumental in disease diagnosis and clinical decision-making, shedding light on relevant features. Notably, Boruta, SHAP (SHapley Additive exPlanations), and BorutaShap were employed for feature selection, each contributing to the identification of crucial features. These selected features were then utilized to train six machine learning algorithms, including LR, SVM, ETC, AdaBoost, RF, and LR, using diverse medical datasets obtained from public sources after rigorous preprocessing. The performance of each feature selection technique was evaluated across multiple ML models, assessing accuracy, precision, recall, and F1-score metrics. Among these, SHAP showcased superior performance, achieving average accuracies of 80.17%, 85.13%, 90.00%, and 99.55% across diabetes, cardiovascular, statlog, and thyroid disease datasets, respectively. Notably, the LGBM emerged as the most effective algorithm, boasting an average accuracy of 91.00% for most disease states. Moreover, SHAP enhanced the interpretability of the models, providing valuable insights into the underlying mechanisms driving disease diagnosis. This comprehensive study contributes significant insights into feature selection techniques and machine learning algorithms for disease diagnosis, benefiting researchers and practitioners in the medical field. Further exploration of feature selection methods and algorithms holds promise for advancing disease diagnosis methodologies, paving the way for more accurate and interpretable diagnostic models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"507-544"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Spinal MRI Image Segmentation Method Based on Improved Swin-UNet. 基于改进 Swin-UNet 的脊柱 MRI 图像分割方法
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-03-03 DOI: 10.1080/0954898X.2024.2323530
Jie Cao, Jiacheng Fan, Chin-Ling Chen, Zhenyu Wu, Qingxuan Jiang, Shikai Li
{"title":"A Spinal MRI Image Segmentation Method Based on Improved Swin-UNet.","authors":"Jie Cao, Jiacheng Fan, Chin-Ling Chen, Zhenyu Wu, Qingxuan Jiang, Shikai Li","doi":"10.1080/0954898X.2024.2323530","DOIUrl":"10.1080/0954898X.2024.2323530","url":null,"abstract":"<p><p>As the number of patients increases, physicians are dealing with more and more cases of degenerative spine pathologies on a daily basis. To reduce the workload of healthcare professionals, we propose a modified Swin-UNet network model. Firstly, the Swin Transformer Blocks are improved using a residual post-normalization and scaling cosine attention mechanism, which makes the training process of the model more stable and improves the accuracy. Secondly, we use the log-space continuous position biasing method instead of the bicubic interpolation position biasing method. This method solves the problem of performance loss caused by the large difference between the resolution of the pretraining image and the resolution of the spine image. Finally, we introduce a segmentation smooth module (SSM) at the decoder stage. The SSM effectively reduces redundancy, and enhances the segmentation edge processing to improve the model's segmentation accuracy. To validate the proposed method, we conducted experiments on a real dataset provided by hospitals. The average segmentation accuracy is no less than 95%. The experimental results demonstrate the superiority of the proposed method over the original model and other models of the same type in segmenting the spinous processes of the vertebrae and the posterior arch of the spine.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"451-479"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-input robust diagnostics for railway point machines via audio signals. 通过音频信号为铁路点检机提供双输入稳健诊断。
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-06-11 DOI: 10.1080/0954898X.2024.2358955
Tao Wen, Jinke Li, Rong Fei, Xinhong Hei, Zhiming Chen, Zhurong Wang
{"title":"Dual-input robust diagnostics for railway point machines via audio signals.","authors":"Tao Wen, Jinke Li, Rong Fei, Xinhong Hei, Zhiming Chen, Zhurong Wang","doi":"10.1080/0954898X.2024.2358955","DOIUrl":"10.1080/0954898X.2024.2358955","url":null,"abstract":"<p><p>Railway Point Machine (RPM) is a fundamental component of railway infrastructure and plays a crucial role in ensuring the safe operation of trains. Its primary function is to divert trains from one track to another, enabling connections between different lines and facilitating route selection. By judiciously deploying turnouts, railway systems can provide efficient transportation services while ensuring the safety of passengers and cargo. As signal processing technologies develop rapidly, taking the easy acquisition advantages of audio signals, a fault diagnosis method for RPMs is proposed by considering noise and multi-channel signals. The proposed method consists of several stages. Initially, the signal is subjected to pre-processing steps, including cropping and channel separation. Subsequently, the signal undergoes noise addition using the Random Length and Dynamic Position Noises Superposition (RDS) module, followed by conversion to a greyscale image. To enhance the data, Synthetic Minority Oversampling Technique (SMOTE) module is applied. Finally, the training data is fed into a Dual-input Attention Convolutional Neural Network (DIACNN). By employing various experimental techniques and designing diverse datasets, our proposed method demonstrates excellent robustness and achieves an outstanding classification accuracy of 99.73%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1163-1184"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of cyber security in IoT based on ant colony optimized artificial neural adaptive Tensor flow. 基于蚁群优化的人工神经自适应张量流增强物联网网络安全
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-07-15 DOI: 10.1080/0954898X.2024.2336058
Vijaya Bhaskar Sadu, Kumar Abhishek, Omaia Mohammed Al-Omari, Sandhya Rani Nallola, Rajeev Kumar Sharma, Mohammad Shadab Khan
{"title":"Enhancement of cyber security in IoT based on ant colony optimized artificial neural adaptive Tensor flow.","authors":"Vijaya Bhaskar Sadu, Kumar Abhishek, Omaia Mohammed Al-Omari, Sandhya Rani Nallola, Rajeev Kumar Sharma, Mohammad Shadab Khan","doi":"10.1080/0954898X.2024.2336058","DOIUrl":"10.1080/0954898X.2024.2336058","url":null,"abstract":"<p><p>The Internet of Things (IoT) is a network that connects various hardware, software, data storage, and applications. These interconnected devices provide services to businesses and can potentially serve as entry points for cyber-attacks. The privacy of IoT devices is increasingly vulnerable, particularly to threats like viruses and illegal software distribution lead to the theft of critical information. Ant Colony-Optimized Artificial Neural-Adaptive Tensorflow (ACO-ANT) technique is proposed to detect malicious software illicitly disseminated through the IoT. To emphasize the significance of each token in source duplicate data, the noise data undergoes processing using tokenization and weighted attribute techniques. Deep learning (DL) methods are then employed to identify source code duplication. Also the Multi-Objective Recurrent Neural Network (M-RNN) is used to identify suspicious activities within an IoT environment. The performance of proposed technique is examined using Loss, accuracy, F measure, precision to identify its efficiency. The experimental outcomes demonstrate that the proposed method ACO-ANT on Malimg dataset provides 12.35%, 14.75%, 11.84% higher precision and 10.95%, 15.78%, 13.89% higher f-measure compared to the existing methods. Further, leveraging block chain for malware detection is a promising direction for future research the fact that could enhance the security of IoT and identify malware threats.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"598-614"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Siamese domain adaptation convolutional neural network-based quaternion fractional order Meixner moments fostered big data analytical method for enhancing cloud data security. 基于深度暹罗域自适应卷积神经网络的四元数分数阶梅克斯纳矩大数据分析方法,用于增强云数据安全性。
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-06-11 DOI: 10.1080/0954898X.2024.2354477
J Sulthan Alikhan, S Miruna Joe Amali, R Karthick
{"title":"Deep Siamese domain adaptation convolutional neural network-based quaternion fractional order Meixner moments fostered big data analytical method for enhancing cloud data security.","authors":"J Sulthan Alikhan, S Miruna Joe Amali, R Karthick","doi":"10.1080/0954898X.2024.2354477","DOIUrl":"10.1080/0954898X.2024.2354477","url":null,"abstract":"<p><p>In this paper, Quaternion Fractional Order Meixner Moments-based Deep Siamese Domain Adaptation Convolutional Neural Network-based Big Data Analytical Technique is proposed for improving Cloud Data Security (DSDA-CNN-QFOMM-BD-CDS). The proposed methodology comprises six phases: data collection, transmission, pre-processing, storage, analysis, and security of data. Big data analysis methodologies start with the data collection phase. Deep Siamese domain adaptation convolutional Neural Network (DSDA-CNN) is applied to categorize the types of attacks in the cloud database during the data analysis process. During data security phase, Quaternion Fractional Order Meixner Moments (QFOMM) is employed to protect the cloud data for encryption with decryption. The proposed method is implemented in JAVA and assessed using performance metrics, including precision, sensitivity, accuracy, recall, specificity, f-measure, computational complexity information loss, compression ratio, throughput, encryption time, decryption time. The performance of the proposed method offers 23.31%, 15.64%, 18.89% better accuracy and 36.69%, 17.25%, 19.96% less information loss. When compared to existing methods like Fractional order discrete Tchebyshev encryption fostered big data analytical model to maximize the safety of cloud data depend on Enhanced Elman spike neural network (EESNN-FrDTM-BD-CDS), an innovative scheme architecture for safe authentication along data sharing in cloud enabled Big data Environment (LZMA-DBSCAN-BD-CDS).</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1079-1106"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligent based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system. 基于人工智能的脑控机械臂多目标够握控制策略。
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2025-01-30 DOI: 10.1080/0954898X.2025.2453620
Kerlin Sara Wilson, K K Saravanan
{"title":"Artificial intelligent based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system.","authors":"Kerlin Sara Wilson, K K Saravanan","doi":"10.1080/0954898X.2025.2453620","DOIUrl":"10.1080/0954898X.2025.2453620","url":null,"abstract":"<p><p>Brain-controlled robotic arm systems are designed to provide a method of communication and control for individuals with limited mobility or communication abilities. These systems can be beneficial for people who have suffered from a spinal cord injury, stroke, or neurological disease that affects their motor abilities. The ability of a person to control a robotic arm to reach and grasp multiple objects using their brain signals. This technology involves the use of an electroencephalogram (EEG) cap that captures the electrical activity in the user's brain, which is then processed by an artificial intelligent to translate it into commands that control the movements of the robotic arm. With this technology, individuals who are unable to move their limbs due to paralysis or other conditions can still perform daily activities such as feeding themselves, drinking from a glass, or grasping objects. In this paper, we propose an artificial intelligent-based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system. The proposed control strategy consists of threefold process: feature extraction, feature optimization, and control strategy classification. Initially, we design an improved ResNet pre-trained architecture for deep feature extraction from the given EEG signal.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1253-1281"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MCN portfolio: An efficient portfolio prediction and selection model using multiserial cascaded network with hybrid meta-heuristic optimization algorithm. MCN 投资组合:使用混合元启发式优化算法的多串级联网络的高效投资组合预测和选择模型。
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-05-08 DOI: 10.1080/0954898X.2024.2346115
Meeta Sharma, Pankaj Kumar Sharma, Hemant Kumar Vijayvergia, Amit Garg, Shyam Sundar Agarwal, Varun Prakash Saxena
{"title":"MCN portfolio: An efficient portfolio prediction and selection model using multiserial cascaded network with hybrid meta-heuristic optimization algorithm.","authors":"Meeta Sharma, Pankaj Kumar Sharma, Hemant Kumar Vijayvergia, Amit Garg, Shyam Sundar Agarwal, Varun Prakash Saxena","doi":"10.1080/0954898X.2024.2346115","DOIUrl":"10.1080/0954898X.2024.2346115","url":null,"abstract":"<p><p>Generally, financial investments are necessary for portfolio management. However, the prediction of a portfolio becomes complicated in several processing techniques which may cause certain issues while predicting the portfolio. Moreover, the error analysis needs to be validated with efficient performance measures. To solve the problems of portfolio optimization, a new portfolio prediction framework is developed. Initially, a dataset is collected from the standard database which is accumulated with various companies' portfolios. For forecasting the benefits of companies, a Multi-serial Cascaded Network (MCNet) is employed which constitutes of Autoencoder, 1D Convolutional Neural Network (1DCNN), and Recurrent Neural Network (RNN) is utilized. The prediction output for the different companies is stored using the developed MCNet model for further use. After predicting the benefits, the best company with the highest profit is selected by Integration of Artificial Rabbit and Hummingbird Algorithm (IARHA). The major contribution of our work is to increase the accuracy of prediction and to choose the optimal portfolio. The implementation is conducted in Python platform. The result analysis shows that the developed model achieves 0.89% and 0.56% regarding RMSE and MAE measures. Throughout the analysis, the experimentation of the developed model shows enriched performance.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"818-854"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing. 基于分数社会优化的迁移和副本管理算法,用于云计算分布式文件系统的负载平衡。
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-05-21 DOI: 10.1080/0954898X.2024.2353665
Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa
{"title":"Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing.","authors":"Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa","doi":"10.1080/0954898X.2024.2353665","DOIUrl":"10.1080/0954898X.2024.2353665","url":null,"abstract":"<p><p>Effective management of data is a major issue in Distributed File System (DFS), like the cloud. This issue is handled by replicating files in an effective manner, which can minimize the time of data access and elevate the data availability. This paper devises a Fractional Social Optimization Algorithm (FSOA) for replica management along with balancing load in DFS in the cloud stage. Balancing the workload for DFS is the main objective. Here, the chunk creation is done by partitioning the file into a different number of chunks considering Deep Fuzzy Clustering (DFC) and then in the round-robin manner the Virtual machine (VM) is assigned. In that case for balancing the load considering certain objectives like resource use, energy consumption and migration cost thereby the load balancing is performed with the proposed FSOA. Here, the FSOA is formulated by uniting the Social optimization algorithm (SOA) and Fractional Calculus (FC). The replica management is done in DFS using the proposed FSOA by considering the various objectives. The FSOA has the smallest load of 0.299, smallest cost of 0.395, smallest energy consumption of 0.510, smallest overhead of 0.358, and smallest throughput of 0.537.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1019-1046"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation. 用于叶病图像分割的优化编码器-解码器级联深度卷积网络
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-05-22 DOI: 10.1080/0954898X.2024.2326493
David Femi, Manapakkam Anandan Mukunthan
{"title":"Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation.","authors":"David Femi, Manapakkam Anandan Mukunthan","doi":"10.1080/0954898X.2024.2326493","DOIUrl":"10.1080/0954898X.2024.2326493","url":null,"abstract":"<p><p>Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"480-506"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing inset-fed rectangular micro strip patch antenna by improved particle swarm optimization and simulated annealing. 通过改进的粒子群优化和模拟退火优化嵌入式馈电矩形微带贴片天线
IF 1.6 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2024-05-28 DOI: 10.1080/0954898X.2024.2358961
Jakkuluri Vijaya Kumar, S Maflin Shaby
{"title":"Optimizing inset-fed rectangular micro strip patch antenna by improved particle swarm optimization and simulated annealing.","authors":"Jakkuluri Vijaya Kumar, S Maflin Shaby","doi":"10.1080/0954898X.2024.2358961","DOIUrl":"10.1080/0954898X.2024.2358961","url":null,"abstract":"<p><p>The recent wireless communication systems require high gain, lightweight, low profile, and simple antenna structures to ensure high efficiency and reliability. The existing microstrip patch antenna (MPA) design approaches attain low gain and high return loss. To solve this issue, the geometric dimensions of the antenna should be optimized. The improved Particle Swarm Optimization (PSO) algorithm which is the combination of PSO and simulated annealing (SA) approach (PSO-SA) is employed in this paper to optimize the width and length of the inset-fed rectangular microstrip patch antennas for Ku-band and C-band applications. The inputs to the proposed algorithm such as substrate height, dielectric constant, and resonant frequency and outputs are optimized for width and height. The return loss and gain of the antenna are considered for the fitness function. To calculate the fitness value, the Feedforward Neural Network (FNN) is employed in the PSO-SA approach. The design and optimization of the proposed MPA are implemented in MATLAB software. The performance of the optimally designed antenna with the proposed approach is evaluated in terms of the radiation pattern, return loss, Voltage Standing Wave Ratio (VSWR), gain, computation time, directivity, and convergence speed.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1282-1312"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信