{"title":"采用新颖的卷积模糊C均值(CFCM)架构对脑膜瘤脑图像进行分类,并结合硬件对肿瘤分割模块进行性能分析。","authors":"K Jayaram, S Kumarganesh, A Immanuvel, C Ganesh","doi":"10.1080/0954898X.2025.2491537","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, meningioma detection and segmentation method is proposed. This research work proposes an effective method to locate meningioma pictures through a novel CFCM classification approach. This proposed method consist of Non-Sub sampled Contourlet Transform decomposition module which decomposes the entire brain image into multi-scale sub-band images and then the heuristic and uniqueness features have been computed individually. Then, these heuristic and uniqueness features are trained and classified using Convolutional Fuzzy C Means (CFCM) classifier. This proposed method is applied on two independent brain imaging datasets. The proposed meningioma identification system stated in this work obtained 98.81% of Se, 98.83% of Sp, 99.04% of Acc, 99.12% of pr, and 99.14% of FIS on Nanfang University dataset brain images. The proposed meningioma identification system stated in this work obtained 98.92% of Se, 98.88% of Sp, 98.9% of Acc, 98.88% of pr, and 99.36% of FIS on the BRATS 2021 brain images. Finally, the tumour segmentation module is designed in VLSI, and it is simulated using Xilinx project navigator in this paper.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-22"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifications of meningioma brain images using the novel Convolutional Fuzzy C Means (CFCM) architecture and performance analysis of hardware incorporated tumor segmentation module.\",\"authors\":\"K Jayaram, S Kumarganesh, A Immanuvel, C Ganesh\",\"doi\":\"10.1080/0954898X.2025.2491537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, meningioma detection and segmentation method is proposed. This research work proposes an effective method to locate meningioma pictures through a novel CFCM classification approach. This proposed method consist of Non-Sub sampled Contourlet Transform decomposition module which decomposes the entire brain image into multi-scale sub-band images and then the heuristic and uniqueness features have been computed individually. Then, these heuristic and uniqueness features are trained and classified using Convolutional Fuzzy C Means (CFCM) classifier. This proposed method is applied on two independent brain imaging datasets. The proposed meningioma identification system stated in this work obtained 98.81% of Se, 98.83% of Sp, 99.04% of Acc, 99.12% of pr, and 99.14% of FIS on Nanfang University dataset brain images. The proposed meningioma identification system stated in this work obtained 98.92% of Se, 98.88% of Sp, 98.9% of Acc, 98.88% of pr, and 99.36% of FIS on the BRATS 2021 brain images. Finally, the tumour segmentation module is designed in VLSI, and it is simulated using Xilinx project navigator in this paper.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2025.2491537\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2491537","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Classifications of meningioma brain images using the novel Convolutional Fuzzy C Means (CFCM) architecture and performance analysis of hardware incorporated tumor segmentation module.
In this paper, meningioma detection and segmentation method is proposed. This research work proposes an effective method to locate meningioma pictures through a novel CFCM classification approach. This proposed method consist of Non-Sub sampled Contourlet Transform decomposition module which decomposes the entire brain image into multi-scale sub-band images and then the heuristic and uniqueness features have been computed individually. Then, these heuristic and uniqueness features are trained and classified using Convolutional Fuzzy C Means (CFCM) classifier. This proposed method is applied on two independent brain imaging datasets. The proposed meningioma identification system stated in this work obtained 98.81% of Se, 98.83% of Sp, 99.04% of Acc, 99.12% of pr, and 99.14% of FIS on Nanfang University dataset brain images. The proposed meningioma identification system stated in this work obtained 98.92% of Se, 98.88% of Sp, 98.9% of Acc, 98.88% of pr, and 99.36% of FIS on the BRATS 2021 brain images. Finally, the tumour segmentation module is designed in VLSI, and it is simulated using Xilinx project navigator in this paper.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.