S K Uma Maheswaran, L Rajasekar, Ziaul Haque Choudhury, Makarand Shahade
{"title":"User behaviour based insider threat detection model using an LSTM integrated RF model.","authors":"S K Uma Maheswaran, L Rajasekar, Ziaul Haque Choudhury, Makarand Shahade","doi":"10.1080/0954898X.2025.2483342","DOIUrl":null,"url":null,"abstract":"<p><p>Insider threat is one of the most serious and frequent security risks facing various industries like governmental organizations, businesses, and institutions. Insider threat identification has a special combination of difficulties, including vastly unbalanced data, insufficient ground truth, and drifting and shifting behaviour. A user behaviour-based insider threat detection model utilizing a hybrid deep long short-term memory-random forest (LSTM-RF) model is developed to address these challenges. In this proposed insider threat detection model, the user log data is preprocessed to replace the missing value and to normalize the data to certain range. Then, these preprocessed data are provided as the input of the attribute selection process that mainly applies for selecting the essential attribute using Spearman's rank correlation coefficient. Then the deep hybrid LSTM-RF classifier to detect whether a system is affected by inside threat or not such as malware, authentication, phishing are fed to the selected features. Hybrid LSTM-RF method is implemented in python and achieved 96% accuracy, 90% precision, 90% specificity, 97% sensitivity, and 94% F1-score. During an attack, it can be easily detected inside the system attack.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-38"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2483342","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Insider threat is one of the most serious and frequent security risks facing various industries like governmental organizations, businesses, and institutions. Insider threat identification has a special combination of difficulties, including vastly unbalanced data, insufficient ground truth, and drifting and shifting behaviour. A user behaviour-based insider threat detection model utilizing a hybrid deep long short-term memory-random forest (LSTM-RF) model is developed to address these challenges. In this proposed insider threat detection model, the user log data is preprocessed to replace the missing value and to normalize the data to certain range. Then, these preprocessed data are provided as the input of the attribute selection process that mainly applies for selecting the essential attribute using Spearman's rank correlation coefficient. Then the deep hybrid LSTM-RF classifier to detect whether a system is affected by inside threat or not such as malware, authentication, phishing are fed to the selected features. Hybrid LSTM-RF method is implemented in python and achieved 96% accuracy, 90% precision, 90% specificity, 97% sensitivity, and 94% F1-score. During an attack, it can be easily detected inside the system attack.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.