{"title":"Energy efficient multipath routing in IoT-wireless sensor network via hybrid optimization and deep learning-based energy prediction.","authors":"G A Senthil, R Prabha, R Renuka Devi","doi":"10.1080/0954898X.2025.2476081","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient data transmission in Wireless Sensor Networks (WSNs) is a critical challenge. Traditional routing protocols focus on energy efficiency but do not consider other factors that might degrade performance. This research proposes a novel Hybrid Beluga Whale-Coati Optimization (HBWCO) algorithm to address these issues, focusing on optimizing energy-efficient data transmission. In the proposed approach, initially, sensor nodes and field dimensions are initialized. Then, K-means clustering is applied to grouping nodes. The Deep Q-Net model is used to predict energy levels of nodes. CH is selected as per the node having higher energy. Multipath routing is performed through the HBWCO algorithm, which optimally selects the best routing paths by considering factors like reliability, residual energy, predicted energy, throughput, and traffic intensity. If link breakage occurs, a route maintenance phase is initiated using Source Link Breakage Warning (SLBW) message strategy to notify the source node about the issue of choosing another path. This work offers a comprehensive approach to enhancing energy efficiency in networks. The suggested HBWCO approach is in contrast to the traditional methods. The HBWCO approach has achieved the highest reliability of 0.948 and the highest throughput of 3496. Therefore, the HBWCO algorithm offers an effective solution for data transmission and routing reliability.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-50"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2476081","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient data transmission in Wireless Sensor Networks (WSNs) is a critical challenge. Traditional routing protocols focus on energy efficiency but do not consider other factors that might degrade performance. This research proposes a novel Hybrid Beluga Whale-Coati Optimization (HBWCO) algorithm to address these issues, focusing on optimizing energy-efficient data transmission. In the proposed approach, initially, sensor nodes and field dimensions are initialized. Then, K-means clustering is applied to grouping nodes. The Deep Q-Net model is used to predict energy levels of nodes. CH is selected as per the node having higher energy. Multipath routing is performed through the HBWCO algorithm, which optimally selects the best routing paths by considering factors like reliability, residual energy, predicted energy, throughput, and traffic intensity. If link breakage occurs, a route maintenance phase is initiated using Source Link Breakage Warning (SLBW) message strategy to notify the source node about the issue of choosing another path. This work offers a comprehensive approach to enhancing energy efficiency in networks. The suggested HBWCO approach is in contrast to the traditional methods. The HBWCO approach has achieved the highest reliability of 0.948 and the highest throughput of 3496. Therefore, the HBWCO algorithm offers an effective solution for data transmission and routing reliability.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.