{"title":"Security-aware user authentication based on multimodal biometric data using dilated adaptive RNN with optimal weighted feature fusion.","authors":"Udhayakumar Selvaraj, Janakiraman Nithiyanantham","doi":"10.1080/0954898X.2025.2480304","DOIUrl":null,"url":null,"abstract":"<p><p>This work plans to develop a biometric authentication model by the combination of multi-modal inputs like voice, fingerprint, and iris to provide high security. At first, the spectrogram images, the collected fingerprint, and the collected iris input were given to a Multi-scale Residual Attention Network (RAN) with Atrous Spatial Pyramid Pooling (ASPP) to extract the best values. These three features are then fed to optimal weighted feature fusion, where weight optimization from the features is done via the Enhanced Lichtenberg Algorithm (ELA). These features are fed into the decision-making stage, where the Dilated Adaptive Recurrent Neural Network is utilized to identify the individuals, where the parameters are optimized from RNN using ELA to improve the recognition performance. The simulation findings achieved from the developed multimodal authentication systems are validated using diverse algorithms over several efficacy metrics like accuracy, precision, sensitivity, F1-score, etc. From the result analysis, the ELA-DARNN-based user authentication system showed a higher accuracy of 96.01, and other models such as 90% than SVM, CNN, CNN-AlexNet, and Dil-ARNN given the accuracy to be 87.94, 89.88, 93.25, and 91.94. Therefore, the outcomes explored that the offered approach has attained elevated results and also effectively supports to reduction of data theft.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-41"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2480304","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This work plans to develop a biometric authentication model by the combination of multi-modal inputs like voice, fingerprint, and iris to provide high security. At first, the spectrogram images, the collected fingerprint, and the collected iris input were given to a Multi-scale Residual Attention Network (RAN) with Atrous Spatial Pyramid Pooling (ASPP) to extract the best values. These three features are then fed to optimal weighted feature fusion, where weight optimization from the features is done via the Enhanced Lichtenberg Algorithm (ELA). These features are fed into the decision-making stage, where the Dilated Adaptive Recurrent Neural Network is utilized to identify the individuals, where the parameters are optimized from RNN using ELA to improve the recognition performance. The simulation findings achieved from the developed multimodal authentication systems are validated using diverse algorithms over several efficacy metrics like accuracy, precision, sensitivity, F1-score, etc. From the result analysis, the ELA-DARNN-based user authentication system showed a higher accuracy of 96.01, and other models such as 90% than SVM, CNN, CNN-AlexNet, and Dil-ARNN given the accuracy to be 87.94, 89.88, 93.25, and 91.94. Therefore, the outcomes explored that the offered approach has attained elevated results and also effectively supports to reduction of data theft.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.