Security-aware user authentication based on multimodal biometric data using dilated adaptive RNN with optimal weighted feature fusion.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Udhayakumar Selvaraj, Janakiraman Nithiyanantham
{"title":"Security-aware user authentication based on multimodal biometric data using dilated adaptive RNN with optimal weighted feature fusion.","authors":"Udhayakumar Selvaraj, Janakiraman Nithiyanantham","doi":"10.1080/0954898X.2025.2480304","DOIUrl":null,"url":null,"abstract":"<p><p>This work plans to develop a biometric authentication model by the combination of multi-modal inputs like voice, fingerprint, and iris to provide high security. At first, the spectrogram images, the collected fingerprint, and the collected iris input were given to a Multi-scale Residual Attention Network (RAN) with Atrous Spatial Pyramid Pooling (ASPP) to extract the best values. These three features are then fed to optimal weighted feature fusion, where weight optimization from the features is done via the Enhanced Lichtenberg Algorithm (ELA). These features are fed into the decision-making stage, where the Dilated Adaptive Recurrent Neural Network is utilized to identify the individuals, where the parameters are optimized from RNN using ELA to improve the recognition performance. The simulation findings achieved from the developed multimodal authentication systems are validated using diverse algorithms over several efficacy metrics like accuracy, precision, sensitivity, F1-score, etc. From the result analysis, the ELA-DARNN-based user authentication system showed a higher accuracy of 96.01, and other models such as 90% than SVM, CNN, CNN-AlexNet, and Dil-ARNN given the accuracy to be 87.94, 89.88, 93.25, and 91.94. Therefore, the outcomes explored that the offered approach has attained elevated results and also effectively supports to reduction of data theft.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-41"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2480304","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This work plans to develop a biometric authentication model by the combination of multi-modal inputs like voice, fingerprint, and iris to provide high security. At first, the spectrogram images, the collected fingerprint, and the collected iris input were given to a Multi-scale Residual Attention Network (RAN) with Atrous Spatial Pyramid Pooling (ASPP) to extract the best values. These three features are then fed to optimal weighted feature fusion, where weight optimization from the features is done via the Enhanced Lichtenberg Algorithm (ELA). These features are fed into the decision-making stage, where the Dilated Adaptive Recurrent Neural Network is utilized to identify the individuals, where the parameters are optimized from RNN using ELA to improve the recognition performance. The simulation findings achieved from the developed multimodal authentication systems are validated using diverse algorithms over several efficacy metrics like accuracy, precision, sensitivity, F1-score, etc. From the result analysis, the ELA-DARNN-based user authentication system showed a higher accuracy of 96.01, and other models such as 90% than SVM, CNN, CNN-AlexNet, and Dil-ARNN given the accuracy to be 87.94, 89.88, 93.25, and 91.94. Therefore, the outcomes explored that the offered approach has attained elevated results and also effectively supports to reduction of data theft.

这项工作计划通过结合语音、指纹和虹膜等多模态输入,开发一种生物识别身份验证模型,以提供高安全性。首先,将频谱图图像、采集到的指纹和采集到的虹膜输入信息交给一个多尺度残留注意力网络(RAN),并利用阿特鲁斯空间金字塔池(ASPP)提取最佳值。然后将这三个特征输入最优加权特征融合,通过增强型利希滕贝格算法(ELA)对特征进行权重优化。这些特征被送入决策阶段,利用稀疏自适应递归神经网络来识别个体,并利用 ELA 对递归神经网络的参数进行优化,以提高识别性能。所开发的多模态身份验证系统的模拟结果通过不同的算法验证了准确度、精确度、灵敏度、F1 分数等多个功效指标。从结果分析来看,基于 ELA-DARNN 的用户身份验证系统的准确率高达 96.01,而其他模型,如 SVM、CNN、CNN-AlexNet 和 Dil-ARNN 的准确率分别为 87.94、89.88、93.25 和 91.94,均高于 SVM、CNN、CNN-AlexNet 和 Dil-ARNN 的 90%。因此,这些结果表明,所提供的方法取得了很好的效果,并有效地减少了数据盗窃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信