Classifications of meningioma brain images using the novel Convolutional Fuzzy C Means (CFCM) architecture and performance analysis of hardware incorporated tumor segmentation module.
IF 1.1 3区 计算机科学Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Classifications of meningioma brain images using the novel Convolutional Fuzzy C Means (CFCM) architecture and performance analysis of hardware incorporated tumor segmentation module.","authors":"K Jayaram, S Kumarganesh, A Immanuvel, C Ganesh","doi":"10.1080/0954898X.2025.2491537","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, meningioma detection and segmentation method is proposed. This research work proposes an effective method to locate meningioma pictures through a novel CFCM classification approach. This proposed method consist of Non-Sub sampled Contourlet Transform decomposition module which decomposes the entire brain image into multi-scale sub-band images and then the heuristic and uniqueness features have been computed individually. Then, these heuristic and uniqueness features are trained and classified using Convolutional Fuzzy C Means (CFCM) classifier. This proposed method is applied on two independent brain imaging datasets. The proposed meningioma identification system stated in this work obtained 98.81% of Se, 98.83% of Sp, 99.04% of Acc, 99.12% of pr, and 99.14% of FIS on Nanfang University dataset brain images. The proposed meningioma identification system stated in this work obtained 98.92% of Se, 98.88% of Sp, 98.9% of Acc, 98.88% of pr, and 99.36% of FIS on the BRATS 2021 brain images. Finally, the tumour segmentation module is designed in VLSI, and it is simulated using Xilinx project navigator in this paper.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-22"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2491537","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, meningioma detection and segmentation method is proposed. This research work proposes an effective method to locate meningioma pictures through a novel CFCM classification approach. This proposed method consist of Non-Sub sampled Contourlet Transform decomposition module which decomposes the entire brain image into multi-scale sub-band images and then the heuristic and uniqueness features have been computed individually. Then, these heuristic and uniqueness features are trained and classified using Convolutional Fuzzy C Means (CFCM) classifier. This proposed method is applied on two independent brain imaging datasets. The proposed meningioma identification system stated in this work obtained 98.81% of Se, 98.83% of Sp, 99.04% of Acc, 99.12% of pr, and 99.14% of FIS on Nanfang University dataset brain images. The proposed meningioma identification system stated in this work obtained 98.92% of Se, 98.88% of Sp, 98.9% of Acc, 98.88% of pr, and 99.36% of FIS on the BRATS 2021 brain images. Finally, the tumour segmentation module is designed in VLSI, and it is simulated using Xilinx project navigator in this paper.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.