Classifications of meningioma brain images using the novel Convolutional Fuzzy C Means (CFCM) architecture and performance analysis of hardware incorporated tumor segmentation module.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
K Jayaram, S Kumarganesh, A Immanuvel, C Ganesh
{"title":"Classifications of meningioma brain images using the novel Convolutional Fuzzy C Means (CFCM) architecture and performance analysis of hardware incorporated tumor segmentation module.","authors":"K Jayaram, S Kumarganesh, A Immanuvel, C Ganesh","doi":"10.1080/0954898X.2025.2491537","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, meningioma detection and segmentation method is proposed. This research work proposes an effective method to locate meningioma pictures through a novel CFCM classification approach. This proposed method consist of Non-Sub sampled Contourlet Transform decomposition module which decomposes the entire brain image into multi-scale sub-band images and then the heuristic and uniqueness features have been computed individually. Then, these heuristic and uniqueness features are trained and classified using Convolutional Fuzzy C Means (CFCM) classifier. This proposed method is applied on two independent brain imaging datasets. The proposed meningioma identification system stated in this work obtained 98.81% of Se, 98.83% of Sp, 99.04% of Acc, 99.12% of pr, and 99.14% of FIS on Nanfang University dataset brain images. The proposed meningioma identification system stated in this work obtained 98.92% of Se, 98.88% of Sp, 98.9% of Acc, 98.88% of pr, and 99.36% of FIS on the BRATS 2021 brain images. Finally, the tumour segmentation module is designed in VLSI, and it is simulated using Xilinx project navigator in this paper.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-22"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2491537","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, meningioma detection and segmentation method is proposed. This research work proposes an effective method to locate meningioma pictures through a novel CFCM classification approach. This proposed method consist of Non-Sub sampled Contourlet Transform decomposition module which decomposes the entire brain image into multi-scale sub-band images and then the heuristic and uniqueness features have been computed individually. Then, these heuristic and uniqueness features are trained and classified using Convolutional Fuzzy C Means (CFCM) classifier. This proposed method is applied on two independent brain imaging datasets. The proposed meningioma identification system stated in this work obtained 98.81% of Se, 98.83% of Sp, 99.04% of Acc, 99.12% of pr, and 99.14% of FIS on Nanfang University dataset brain images. The proposed meningioma identification system stated in this work obtained 98.92% of Se, 98.88% of Sp, 98.9% of Acc, 98.88% of pr, and 99.36% of FIS on the BRATS 2021 brain images. Finally, the tumour segmentation module is designed in VLSI, and it is simulated using Xilinx project navigator in this paper.

采用新颖的卷积模糊C均值(CFCM)架构对脑膜瘤脑图像进行分类,并结合硬件对肿瘤分割模块进行性能分析。
本文提出了一种脑膜瘤的检测与分割方法。本研究通过一种新的CFCM分类方法,提出了一种有效的脑膜瘤图像定位方法。该方法由非子采样Contourlet变换分解模块组成,该模块将整个脑图像分解成多尺度子带图像,然后分别计算启发式特征和唯一性特征。然后,使用卷积模糊C均值(CFCM)分类器对这些启发式和唯一性特征进行训练和分类。将该方法应用于两个独立的脑成像数据集。本文提出的脑膜瘤识别系统在南方大学数据集脑图像上获得了98.81%的Se、98.83%的Sp、99.04%的Acc、99.12%的pr和99.14%的FIS。本文提出的脑膜瘤识别系统在BRATS 2021脑图像上获得了98.92%的Se、98.88%的Sp、98.9%的Acc、98.88%的pr和99.36%的FIS。最后,在VLSI中设计了肿瘤分割模块,并利用Xilinx项目导航器对其进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信