Liping Chen, Arkan K. S. Sabonchi, Yaser A. Nanehkaran
{"title":"COVID-19 pandemic microplastics environmental impacts predicted by deep random forest (DRF) predictive model","authors":"Liping Chen, Arkan K. S. Sabonchi, Yaser A. Nanehkaran","doi":"10.1186/s12302-024-01019-z","DOIUrl":"10.1186/s12302-024-01019-z","url":null,"abstract":"<div><h3>Background</h3><p>Microplastic pollution is a pressing issue with far-reaching environmental and public health consequences. This study delves into the intricacies of predicting microplastic pollution during the COVID-19 pandemic in Tehran, Iran.</p><h3>Methods</h3><p>The research introduces a rigorous comparative analysis that evaluates the predictive prowess of the Deep Random Forest algorithm and established benchmarks, such as Random Forest, Decision Trees, Gradient Boosting, AdaBoost, and Support Vector Machine. The evaluation process encompasses a meticulous 70–30 training–testing split of the main data set. Performance is assessed by analysis metrics, including ROC and statistical errors. The primary data set encompasses distinct categories, including household wastes, hospital wastes, clinics wastes, and unknown-originated susceptible waste which is categorized in Infected items, PPEs, SUPs, Test kits, Medical packages, Unknown-originated pandemic mircoplastic waste. Deliberately, this data set was partitioned into training and testing subsets, ensuring the robustness and reliability of subsequent analyses. Approximately 70% of the main database was allocated to the training data set, with the remaining 30% constituting the testing data set.</p><h3>Results</h3><p>The findings underscore the proposed algorithm’s supremacy, boasting an impressive AUC = 0.941. This exceptional score reflects the model’s precision in categorizing microplastics. These results have profound implications for environmental management and public health during pandemics.</p><h3>Conclusions</h3><p>The study positions the proposed model as a potent tool for microplastic pollution prediction, encouraging further research to refine predictive models and tap into new data sources for a more comprehensive understanding of microplastic dynamics in urban settings.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01019-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie Mlnaříková, Marek Pípal, Lucie Bláhová, Luděk Bláha
{"title":"Is environmental risk assessment possible with the alternatives to acute fish toxicity test? Case study with pharmaceuticals","authors":"Marie Mlnaříková, Marek Pípal, Lucie Bláhová, Luděk Bláha","doi":"10.1186/s12302-024-01015-3","DOIUrl":"10.1186/s12302-024-01015-3","url":null,"abstract":"<div><h3>Background</h3><p>Acute fish toxicity test (AFT) is one of the cornerstones of environmental risk assessment (ERA) of chemicals for the aquatic environment. Despite many efforts to find an alternative able to fully replace the test, there is still lasting pressure from stakeholders for AFT results. </p><h3>Results</h3><p>Here, we present the results of a case study with eight pharmaceuticals from various pharmaceutical groups with different levels of expected toxicity to fish. Selected compounds were tested in two validated alternative tests—fish embryo toxicity test with zebrafish (<i>Danio rerio</i>) (zFET) and in vitro RTgill-W1 assay according to their corresponding OECD guidelines TG 236 and TG 249, respectively. Data for AFT were collected from PubMed and ECOTOX knowledgebase databases, and acute toxicity to fish was further predicted in silico by the ECOSAR program. Predicted environmental risks (risk quotients, RQ, calculated using the exposure data from NORMAN) from both zFET and RTgill-W1 well correlated with the average RQs based on AFT LC50s. The strongest and most significant correlation was observed while comparing the AFT results with the median of combined alternative methods (zFET, RTgill-W1, ECOSAR).</p><h3>Conclusions</h3><p>This proposed approach combining experimental data with modeling could serve as a reliable tool for predictions of environmental risks promoting the 3R alternatives to acute fish toxicity testing.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01015-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GhGME31D identified to regulate AsA activation in response to alkali stress from GME gene family implications in cotton","authors":"Xiao Chen, Yapeng Fan, Hongyu Nan, Cun Rui, Jing Zhang, Menghao Zhang, Yuping Sun, Lidong Wang, Zhining Yang, Ruize Song, Fange Wu, Shuai Wang, Lixue Guo, Xiugui Chen, Xuke Lu, Xiaoping Zhu, Ning Wang, Keyun Feng, Kunpeng Zhang, Wuwei Ye","doi":"10.1186/s12302-024-01014-4","DOIUrl":"10.1186/s12302-024-01014-4","url":null,"abstract":"<div><p>Vitamin C, also referred to as ascorbic acid (AsA), is recognized for its capacity to cure and avert scurvy, and it is crucial for regular human growth and development. In various crops, AsA participates in stress response mechanisms mediated by abscisic acid and has been discovered to have a crucial function in the morphogenesis, growth, development, and production of male gametes in plants. GDP-D-mannose 3′,5′-epimerase (GME) is essential in the synthesis of vitamin C. Our research identified 91, 83, 51, and 46 genes, respectively, found in G. <i>barbadense </i>(GbGMEs), G<i>. hirsutum </i>(GhGMEs), G. <i>arboretum </i>(GaGMEs), and G. <i>raimondii </i>(GrGMEs). Plants resulting from VIGS infection with GhGME31D clearly showed yellowing, water loss and wilting of leaves and black spots on stems. Measurement of MDA and AsA levels indicated that the plants were more damaged. This indicates that AsA has a substantial impact on plant growth and development.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01014-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How to measure the impact of landsenses ecology on sustainable development? A review of people-oriented emerging approaches","authors":"Zhang Lan","doi":"10.1186/s12302-024-01010-8","DOIUrl":"10.1186/s12302-024-01010-8","url":null,"abstract":"<div><p>At present, the research of sustainable development is developing from a single local problem to a multi-scale, transdisciplinary and comprehensive study. The evaluation and monitoring of its progress need to adopt multi-disciplinary research methods and multi-dimensional, multi-scale identification mechanism. Landsenses ecology is an emerging scientific system that uses the basic principles of ecology to study the sustainable development of land-use planning, construction, and management from the aspects of natural elements, physical senses, psychological perceptions, social economy, process and risk. It provides an effective way for the multi-disciplinary integration research of the relationship between human and ecosystem, and provides an important method and theory for the sustainable transformation research of environmental system and social–economic system, and plays an important role in guiding and realizing the beneficial impact of human on natural ecosystem. This study describes 57 articles published in peer-reviewed journals between 2016 and 2024, using qualitative content analysis, and discusses the impact of landsenses ecology on the way sustainable development is perceived and practiced. The results suggest that the role of landsenses ecology in the creation of sustainable vision resonance and behavior is crucial to the study of sustainable transformation and will help to explore effective strategies for using intrinsic sustainable transformation as a deep leverage point.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01010-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Franziska Koller, Michael Cieslak, Andreas Bauer-Panskus
{"title":"Environmental risk scenarios of specific NGT applications in Brassicaceae oilseed plants","authors":"Franziska Koller, Michael Cieslak, Andreas Bauer-Panskus","doi":"10.1186/s12302-024-01009-1","DOIUrl":"10.1186/s12302-024-01009-1","url":null,"abstract":"<div><h3>Background</h3><p>Oilseed plants of the Brassicaceae plant family are cultivated for food, feed and industrial purposes on large-scale in Europe. This review gives an overview of current market-oriented applications of new genomic techniques (NGTs) in relevant Brassicaceae oilseed crops based on a literature survey. In this respect, changes in oil quality, yield, growth and resistance to biotic and abiotic stress are under development in oilseed rape <i>(Brassica napus),</i> camelina (<i>Camelina sativa</i>), and pennycress (<i>Thlaspi arvense</i>)<i>.</i></p><h3>Main findings</h3><p>Environmental risk scenarios starting with hazard identification are developed for specific NGT applications in Brassicaceae oilseed crops with either a changed oil composition or with fitness-related traits. In case of a changed oil composition, an increase or decrease of polyunsaturated fatty acids (PUFA) may lead to risks for health and survival of pollinators. Regarding fitness-related traits, other risks were identified, i.e. an increased spread and persistence of NGT plants. Furthermore, there are indications for potential disturbance of interactions with the environment, involving signalling pathways and reaction to stress conditions.</p><h3>Conclusion</h3><p>It is shown that for environmental risk scenarios of the technological specificities of NGTs, the plants’ biology and the scale of releases have to be considered in combination. Therefore, the release of NGT plants into the environment for agricultural purposes will, also in future, require risk assessment and monitoring of individual traits as well as of combinatorial and long-term cumulative effects. In addition, risk management should develop concepts and measures to control and potentially limit the scale of releases. This is especially relevant for NGT Brassicaceae in Europe, which is a centre of diversity of this plant family.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01009-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Yang, Huiling Chen, Zhansheng Li, Yifan Ruan, Qiying Yang
{"title":"Temporal and spatial analysis of fertilizer application intensity and its environmental risks in China from 1978 to 2022","authors":"Shanshan Yang, Huiling Chen, Zhansheng Li, Yifan Ruan, Qiying Yang","doi":"10.1186/s12302-024-01011-7","DOIUrl":"10.1186/s12302-024-01011-7","url":null,"abstract":"<div><p>Fertilizers are an essential input in agriculture as they can enhance crop yields. However, their use also poses significant environmental risks. To thoroughly explore the intensity of fertilizer use and its potential threats to the ecological environment, this study analyzed the environmental risks of fertilizer use from a temporal and spatial perspective based on fertilizer application data in China from 1978 to 2022. Additionally, the contribution of fertilizer application in Chinese farmland to greenhouse gas N<sub>2</sub>O emissions was quantified using IPCC emission factor methodology. The results indicated that fertilizer application intensity and N<sub>2</sub>O emissions in China initially increased and then decreased from 1978 to 2022. Despite the implementation of various fertilizer control measures at the policy level, such as the Zero Growth of Fertilizer Action in 2015 and the Efficiency-Increasing Action for Reducing Fertilizer Use in 2022, the intensity of fertilizer application in China still exceeded international safety standards by 1.33-fold in 2022, reaching 298.79 kg/hm<sup>2</sup>. Furthermore, N<sub>2</sub>O emissions amounted to 50.17 × 10<sup>4</sup>t, accounting for 16% of China's total agricultural greenhouse gas emissions that year. Correlation and regression analyses demonstrated that with increasing fertilizer application, crop production exhibits an inverted U-shaped growth trend, indicating limited effectiveness of high-intensity fertilizer use in increasing crop yields. These findings highlight the profound greenhouse effect resulting from the use of agricultural nitrogen fertilizer. Therefore, this study proposed technical and policy-level mitigation measures to address the issues caused by excessive fertilizer application, aiming to provide insights for controlling agricultural non-point source pollution and preserving the agroecological environment.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01011-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edna Rödig, Simon Ford, Andrew D. Bailey, Michael Bird, Mitesh Patel
{"title":"Subjectivity of visual assessments in FOCUS kinetics and acceptability of first-order fits for regulatory modelling","authors":"Edna Rödig, Simon Ford, Andrew D. Bailey, Michael Bird, Mitesh Patel","doi":"10.1186/s12302-024-01013-5","DOIUrl":"10.1186/s12302-024-01013-5","url":null,"abstract":"<div><p>The degradation half-life (DegT50) of a substance in soil plays an important role in the approval process of a plant protection product and is a sensitive input parameter for regulatory models. It is usually derived through least squares optimizations of mathematical models to measured degradation data according to EU FOCUS degradation kinetics guidance. A strong consensus on degradation parameters provides a solid foundation for parts of the environmental risk assessment. The DegT50 of a substance for regulatory modeling is preferably derived from a single first-order (SFO) model as this is currently the only kinetic model implemented in EU regulatory models of the environmental fate of pesticides. However, kinetic optimisation tools do not always provide a regulatory acceptable SFO fit even though a visual inspection of the data suggests it may be possible. It was therefore hypothesized that more acceptable SFO fits might be achieved by adapting the objective function that is minimized during the optimization.</p><p>Eight objective functions with varying weightings were tested on 29 laboratory soil degradation datasets. A web-based app was developed to allow experts in environmental safety of plant protection products to visually assess the goodness of fits resulting from different objective functions. The visual assessments and a quantitative metric, newly introduced in the proposed update of the FOCUS guidance, show that the acceptability of SFO fits can be increased, but no single objective function exclusively improves all fits. The assessment reveals that expert judgment is very subjective. Participants tended to change their mind when judging the acceptance of a fit, assumingly caused by a learning curve or a period of calibration.</p><p>It is concluded that different objective functions could be considered in the kinetic assessment as it can improve the acceptability of SFO fits and hence endpoints for regulatory modeling. This study reveals that various qualitative factors influence the visual judgment of experts when performing a kinetic modeling assessment. The proposed quantitative metric seems to be in alignment with the visual assessment of fits to derive modeling endpoints and a promising step toward less subjective kinetic modeling assessments.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01013-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vaidotas Kisielius, Bo Markussen, Hans Christian Bruun Hansen, Lars Holm Rasmussen
{"title":"Geographical distribution of caudatoside and ptaquiloside in bracken ferns in Northern Europe","authors":"Vaidotas Kisielius, Bo Markussen, Hans Christian Bruun Hansen, Lars Holm Rasmussen","doi":"10.1186/s12302-024-01012-6","DOIUrl":"10.1186/s12302-024-01012-6","url":null,"abstract":"<div><p>Bracken ferns (genus <i>Pteridium</i>) are among the most prevalent plants worldwide, with their distribution expanding due to their invasive nature. The environmental implications of their proliferation in areas affected by human activity, natural disasters, or land-use changes are concerning, primarily because of the carcinogenic illudane glycosides they produce. These compounds cause domestic and wildlife animal poisoning, as well as contamination of dairy products and drinking water. Several illudane glycosides are known, but usually only ptaquiloside (PTA) is monitored. This study investigates the spatial and temporal variations in illudane glycosides PTA, caudatoside (CAU) and ptesculentoside (PTE) across two phenotypes of <i>Pteridium aquilinum</i> (vars. <i>aquilinum</i> and <i>latiusculum</i>) over a broad geographic range spanning Denmark, Sweden, and Finland, encompassing 66 locations. We analysed different parts of the fern fronds (the tips and the lowest pinnae) using LC–MS and statistically explored the influence of phenotype, frond part, geographic location, sunlight exposure, and the surrounding ecosystem on glycoside content. Our findings reveal that PTA accounts for approximately two-thirds of the total illudane glycoside content, followed by CAU at nearly one-third, and a minor contribution from PTE. Glycoside levels were not influenced by phenotypic varieties or the studied environmental factors, but were significantly affected by geographic location. Specifically, CAU levels increased progressively towards the northeast, while PTA concentrations were highest in Denmark and markedly decreased in northeastern countries by over threefold, presumably due to climatic gradient. It has been further supported by temporal analysis in selected PTA-dominant regions indicating a reduction in PTA towards the end of the growing season, aligning its levels with those of CAU. Our study highlights that CAU concentrations in bracken ferns may equal or surpass PTA, contesting the prevailing view that PTA is the only notable illudane glycoside in Bracken<i>.</i> To provide unbiased assessment of the potential risks posed by <i>P. aquilinum</i> in the region, environmental and toxicological research should include measurements of not only PTA, but also CAU and, if possible, PTE.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01012-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fungi as versatile biocatalytic tool for treatment of textile wastewater effluents","authors":"Ashok Pundir, Mohindra Singh Thakur, Suraj Prakash, Neeraj Kumari, Niharika Sharma, Ettiyagounder Parameswari, Zhongqi He, Sunghyun Nam, Mamta Thakur, Sunil Puri, Shriniketan Puranik, Sunil Kumar, Madhu, Manoj Kumar","doi":"10.1186/s12302-024-01007-3","DOIUrl":"10.1186/s12302-024-01007-3","url":null,"abstract":"<div><p>Textile wastewater poses a significant environmental challenge, primarily due to the presence of diverse contaminants, especially textile dyes. Untreated release of these effluents directly into aquatic systems can lead to esthetic degradation, eutrophication, reduced photosynthetic activity, and accumulation of hazardous substances. Although conventional treatment methods are employed for reducing the contaminant load in effluents, they often are less efficient, thus prompting the exploration of innovative alternatives. Current review highlights myco-remediation as an inexpensive, promising and environmentally sustainable solution. Fungi, with their diverse decontamination mechanisms such as biosorption, biotransformation, and immobilization, prove effective in reducing heavy metals, persistent organic pollutants, and emerging contaminant levels present in these effluents, However, more research effort is needed to apply the biodegradation strategy to decompose completely the “forever chemicals” per‐ and polyfluorinated alkyl substances. Fungi play a key role in degrading and decolorizing textile dyes due to their biocatalytic activity mediated by the production of oxidative enzymes, such as laccases, lignin peroxidases, and manganese peroxidases, as well as their dye adsorption capabilities. This comprehensive review concentrates on fungi-based remediation of textile wastewater effluents, including the mechanisms they employ. While most studies concentrate on effluent treatment, this review also explores the concurrent utilization of biomass and growth kinetics for efficient reduction in pollutant concentrations. Further, the current work showed data on optimization of growth conditions such as pH, temperature and nutrient requirements that lead to efficient effluent decontamination.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01007-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring a GIS-based analytic hierarchy process for spatial flood risk assessment in Egypt: a case study of the Damietta branch","authors":"Mohamed Zhran, Karim Ghanem, Aqil Tariq, Fahad Alshehri, Shuanggen Jin, Jayanta Das, Chaitanya Baliram Pande, Malay Pramanik, Fahdah Falah Ben Hasher, Ashraf Mousa","doi":"10.1186/s12302-024-01001-9","DOIUrl":"10.1186/s12302-024-01001-9","url":null,"abstract":"<div><p>Floods are the most common and costly disasters worldwide, while spatial flood risk assessment is still challenging due to fewer observations and method limitations. In this study, the flood risk zonation in the Nile districts of the Damietta branch, Egypt, is delineated and assessed by integrating remote sensing with a geographic information system, and an analytical hierarchy process (AHP). Twelve thematic layers (elevation, slope, normalized difference vegetation index, topographic wetness index, modified normalized difference water index, topographic positioning index, stream power index, modified Fournier index, drainage density, distance to the river, sediment transport index, and lithology) are used for producing flood susceptibility zonation (FSZ) and six parameters (total population, distance to hospital, land use/land cover, population density, road density, and distance to road) are utilized for producing flood vulnerability zonation. Multicollinearity analysis is applied to identify highly correlated independent variables. Sensitivity studies have been used to assess the effectiveness of the AHP model. The results indicate that the high and very high flood risk classes cover 21.40% and 8.26% of the area, respectively. In 14.07%, 27.01%, and 29.26% of the research area, respectively, flood risk zones classified as very low, low, and moderate are found. Finally, FSZ is validated using the receiver operating characteristics curve and area under curve (AUC) analysis. A higher AUC value (0.741) in the validation findings demonstrated the validity of this AHP approach. The results of this study will help planners, hydrologists, and managers of water resources manage areas that are susceptible to flooding and reduce potential harm.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01001-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}