Nina Kuschik-Maczollek, Malte Glock, Markus Schmitz, Henner Hollert, Martin Krauss, Aleksandra Piotrowska, Werner Brack, Jörg Oehlmann
{"title":"In vitro effect-based monitoring of water, sediment and soil from a floodplain restoration site in Central Europe","authors":"Nina Kuschik-Maczollek, Malte Glock, Markus Schmitz, Henner Hollert, Martin Krauss, Aleksandra Piotrowska, Werner Brack, Jörg Oehlmann","doi":"10.1186/s12302-024-00939-0","DOIUrl":"https://doi.org/10.1186/s12302-024-00939-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Floodplains are biodiversity hotspots and provide numerous ecosystem services. In recent decades, however, 70–90% of Europe’s floodplains have been structurally degraded. Accordingly, many (inter-)national programs aim to restore and protect floodplain ecosystems. The success of such measures also depends on the chemical contamination, especially of floodplain soils and sediments, which serve as sinks and sources for a variety of pollutants. In this study, we assess the current ecotoxicological status of a floodplain restoration site along the Main River (Frankfurt am Main, Germany) and estimate its development potential with respect to the influence of a local industrial plant and potential legacy contaminations. We therefore use in vitro effect-based methods (EBMs) testing for baseline toxicity, mutagenicity, dioxin-like and estrogenic activities, coupled with chemical analysis.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Of all water bodies analyzed, the overall toxicity was highest in two flood depressions. In the respective water phase, estrogenic activities exceeded the environmental quality standard and sediment samples were positive for all tested endpoints. Chemical analysis of these sediments revealed high concentrations of polycyclic aromatic hydrocarbons. Soil samples from frequently flooded areas showed the highest mutagenic potential for both frameshift and point mutations with and without metabolic activation. The industrial effluent showed baseline toxic, mutagenic, and dioxin-like activities, that were highly diluted in the Main River. In turn, most of the sediment samples downstream of the industrial discharge showed significantly elevated baseline toxic, estrogenic and dioxin-like activities as well as increased chemical contamination.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Based on the results of this study, we rate the overall ecotoxicological status of a recently established tributary and groundwater-fed ponds as good, and identified two flood depressions near the Main River as hot spots of contamination. We assume that the observed mutagenicity in the floodplain soils is related to legacy contaminations from former aniline and azo dye production. In terms of the development potential of the floodplain restoration site, we emphasize considering the remobilization of pollutants from these soils and suppose that, in the long term, pollution of the Main River and the local industrial plant may negatively impact sediment quality in its tributaries. With this study, we confirmed the utility of in vitro EBMs for identifying chemically and ecotoxicologically relevant sites.</p>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"146 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas Streib, Jurg W. Spaak, Marius Kloft, Ralf B. Schäfer
{"title":"The spatiotemporal profile and adaptation determine the joint effects and interactions of multiple stressors","authors":"Lucas Streib, Jurg W. Spaak, Marius Kloft, Ralf B. Schäfer","doi":"10.1186/s12302-024-00945-2","DOIUrl":"https://doi.org/10.1186/s12302-024-00945-2","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Biodiversity is declining worldwide as ecosystems are increasingly threatened by multiple stressors associated with anthropogenic global change. Stressors frequently co-occur across scales spatially and temporally, resulting in joint effects that are additive or non-additive, i.e., antagonism or synergism. Forecasting and counteracting threats from intensifying stressors requires improved mechanistic understanding of joint effects, which is currently relatively low. To date, research on multiple stressors has been biased toward simplified scenarios, emphasized classification of interactions over realized joint effects, and mostly ignored adaptation (i.e., phenotypic plasticity or evolving life-history traits) of organisms. To investigate if more a realistic scenarios design incorporating complex spatiotemporal stressor profiles and adaption change joint effects and interactions of multiple stressors compared to simplified scenarios, we modified a spatially explicit meta-population model for a generic freshwater insect. We used the model to simulate different, hypothetical spatiotemporal profiles of a continuous and a discrete stressor and evaluated their joint effects and interactions. Agricultural land use represented the continuous stressor impacting meta-population patch quality and network connectivity and related scenarios implied different trajectories. Climatic events represented the discrete stressor impacting all patches simultaneously by temporary mortality events, with related scenarios implying different event severity. Adaptation mitigated the effects of climatic events based on previous events.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Excluding adaptation, we found that at higher levels of the discrete stressor (i.e., strong and frequent climatic events) it strongly dominates the joint effects, while at a low level (i.e., weak and infrequent climatic events) of the discrete stressor, the continuous stressor (i.e., land use) dominates. Yet, the continuous stressor always defined the interaction type, with decreasing land use stress leading to antagonism, and increasing land use stress leading to synergism. Adaptation reduced joint effects under decreasing land use stress, yet had little compensatory influence under increasing land use stress. Moreover, adaptation changed interaction sizes inconsistently across the different land use and climate scenarios, with change depending on the climate scenario. Here, interactions decreased in the moderate scenario but increased in the severe and intense scenarios.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>We highlight that realistic stressor scenarios accounting for potential adaptation are critical for a mechanistic understanding of how species respond to global change. To our knowledge, this is the first modeling study to show that stressor interactions depend on complex spatiotemporal stressor profiles and","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"23 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Željka Lončarić, Carina Lackmann, Dora Bjedov, Antonio Šimić, Sandra Ečimović, Thomas-Benjamin Seiler, Henner Hollert, Mirna Velki
{"title":"Chronic effects of commercial pesticide preparations on biomarkers and reproductive success in earthworm Eisenia andrei","authors":"Željka Lončarić, Carina Lackmann, Dora Bjedov, Antonio Šimić, Sandra Ečimović, Thomas-Benjamin Seiler, Henner Hollert, Mirna Velki","doi":"10.1186/s12302-024-00940-7","DOIUrl":"10.1186/s12302-024-00940-7","url":null,"abstract":"<div><p>Chemical pollution resulting from pesticide usage has been a continuous issue since the 1960s, despite comprehensive European Union legislation designed to safeguard human health and the environment from the adverse effects of pesticides. While regulatory risk assessments primarily focus on the active ingredients, recent research indicates ecotoxicological impacts of commercial preparations on non-target organisms, particularly within the soil ecosystem where key species such as earthworms play a vital role in maintaining soil quality and fertility. Therefore, the aim of this study was the assessment of the long-term effects of the following respective commercial preparations: the insecticides Sumialfa (esfenvalerate) and Calypso (thiacloprid), as well as the herbicides Frontier (dimethenamid-<i>p</i>) and Filon (prosulfocarb) on the earthworm <i>Eisenia andrei</i> in standardized soil during long-term exposures of 7, 14, and 28 days. To study the possible effects on different levels of biological organization, enzymatic biomarkers: acetylcholinesterase (AChE), carboxylesterase (CES) glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx); non-enzymatic biomarkers: multixenobiotic resistance activity (MXR), levels of glutathione (GSH), and reactive oxygen species (ROS) as well as reproductive success were investigated. While Calypso appeared to be the least toxic substance, all pesticides showed significant effect on multiobiomarker response in <i>E. fetida</i>. That being said, the response of MXR activity was significantly altered by all tested pesticides indicating MXR being the most sensitive endpoint of the present research. Recovery of MXR was observed after 28 days, however, only in case of exposure to Filon, while the recovery of CAT activity was recorded after 28 days as well, subsequent to Sumialfa exposure. Reproductive success was negatively impacted regarding the Frontier and Sumialfa exposure at the highest concentration (100 mg/kg) reflected in reduced number of cocoons, while only the exposure to Frontier (100 mg/kg) reduced the number of juveniles. Based on the results, it is important to include commercial pesticide formulations in pesticide risk assessments. The toxicity classifications of the studied pesticides suggest the potential detrimental consequences to the key soil species in terrestrial ecosystems at various concentrations. Future studies should include other soil species as well as investigation of higher levels of biological organization, i.e., behavioral endpoints, to determine the potential risks to terrestrial ecosystems.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00940-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ulrike Kammann, Verena Töpker, Nicole Schmidt, Marcellus Rödiger, Marc-Oliver Aust, Michael Gabel, Jörn Peter Scharsack
{"title":"Explosives leaking from dumped munition contaminate fish from German coastal waters: a reason for chronic effects?","authors":"Ulrike Kammann, Verena Töpker, Nicole Schmidt, Marcellus Rödiger, Marc-Oliver Aust, Michael Gabel, Jörn Peter Scharsack","doi":"10.1186/s12302-024-00942-5","DOIUrl":"10.1186/s12302-024-00942-5","url":null,"abstract":"<div><h3>Background</h3><p>Conventional munition dumped into the North Sea and the Baltic Sea close to the German coastline is corroding. A major concern is that biota, including fish, are negatively affected by toxic explosives leaking into marine environments. With the present study, we investigated fish living in close proximity to munition dumping sites for contamination and for signs of health impairments. The flat fish species common dab (<i>Limanda limanda</i>) was used as a model, since it lives in the vicinity of dumping sites and exhibits minor migratory activity. Since explosives are excreted via the bile, the bile fluids from dab were analysed. Further on we inspected the health status of the fish.</p><h3>Results</h3><p>Dab caught in German coastal waters of the Baltic Sea and the North Sea were contaminated with explosives. Probably due to rapid metabolization, concentrations of the explosive 2,4,6-trinitrotoluene (TNT) were always below limit of detection, but its metabolites 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were detected in bile fluid up to 26.36 ng/ml and 95.91 ng/ml, respectively. Only few fish from the Baltic Sea were positive for the explosive HMX, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with a maximum concentration of 0.89 ng/ml. Highest concentrations of TNT metabolites in bile fluid were detected in dab collected near the dumping site “Kolberger Heide” in the bay of Kiel (Baltic Sea). However, also dab from the North Sea were significantly contaminated with TNT metabolites.</p><h3>Conclusions</h3><p>The present study showed for the first time that fish living close to near shore munition dumping sites in the North Sea are contaminated with explosives. Various health indicators (body condition factors, externally visible fish diseases, parasites or liver anomalies) showed differences in health status between fish living in the North Sea and in the Baltic Sea, respectively. However, the health status of fish caught at the most contaminated site in the Baltic Sea was not worse compared to fish living in less contaminated areas. We conclude that fish living in the vicinity of dumping sites in the North Sea and the Baltic Sea can be significantly contaminated with explosives. However, obvious health impairments of the fish were not observed.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00942-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elvira De Rosa, Paolo Montuori, Fabiana Di Duca, Bruna De Simone, Stefano Scippa, Raffaele Nubi, Donatella Paola Provvisiero, Immacolata Russo, Maria Triassi
{"title":"Assessment of atrazine contamination in the Sele River estuary: spatial distribution, human health risks, and ecological implications in Southern Europe","authors":"Elvira De Rosa, Paolo Montuori, Fabiana Di Duca, Bruna De Simone, Stefano Scippa, Raffaele Nubi, Donatella Paola Provvisiero, Immacolata Russo, Maria Triassi","doi":"10.1186/s12302-024-00941-6","DOIUrl":"10.1186/s12302-024-00941-6","url":null,"abstract":"<div><h3>Background</h3><p>Overuse of pesticides is a major worldwide problem for the environment and human health. Atrazine (ATR) is a synthetic triazine herbicide that is typically used to manage crops and although it was banned many years ago, it was detected frequently with a high persistence in the aquatic environments. This study assesses the human and environment health risks, temporal patterns and spatial distribution of ATR and its degradation products (DPs) in the Sele River estuary within the Southern European context.. It specifically investigates their occurrence in the water dissolved phase (WDP), suspended particulate matter (SPM), and sediment.</p><h3>Results</h3><p>Sampling was conducted across 10 sites throughout the year’s four seasons. Amounts of ATR and its DPs detected ranged from 20.1 to 96.5 ng L<sup>−1</sup> in WDP, from 5.4 to 60.2 ng L<sup>−1</sup> in SPM, and from 4.7 to 19.8 ng g<sup>−1</sup> in sediment samples, signifying some pollution levels. Spatial distribution mechanisms revealed a southward movement of ATR and its DPs pollution from the Sele River mouth, intensifying during the rainy season. In this study area, a risk evaluation was also carried out. No sample contained ATR or its DPs in concentrations above the recommended limits, which pose a Non-carcinogenic and Carcinogenic risk. The environmental risk was low. Additionally, the determined Incremental lifetime cancer risk (ILCR) value was within the allowable range.</p><h3>Conclusion</h3><p>Despite its long-standing prohibition, this study investigate ATR levels in the water and sediments of Sele River in Southern Europe. Beyond simply delineating the pollution status of Sele River, this research delineates its ecological repercussions on the Thyrrenian Sea, providing essential data for norms and laws related to water contamination.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00941-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141328979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valeria Dulio, Nikiforos Alygizakis, Kelsey Ng, Emma L. Schymanski, Sandrine Andres, Katrin Vorkamp, Juliane Hollender, Saskia Finckh, Reza Aalizadeh, Lutz Ahrens, Elodie Bouhoulle, Ľuboš Čirka, Anja Derksen, Geneviève Deviller, Anja Duffek, Mar Esperanza, Stellan Fischer, Qiuguo Fu, Pablo Gago-Ferrero, Peter Haglund, Marion Junghans, Stefan A. E. Kools, Jan Koschorreck, Benjamin Lopez, Miren Lopez de Alda, Giuseppe Mascolo, Cécile Miège, Leonard Osté, Simon O’Toole, Pawel Rostkowski, Tobias Schulze, Kerry Sims, Laetitia Six, Jaroslav Slobodnik, Pierre-François Staub, Gerard Stroomberg, Nikolaos S. Thomaidis, Anne Togola, Giorgio Tomasi, Peter C. von der Ohe
{"title":"Beyond target chemicals: updating the NORMAN prioritisation scheme to support the EU chemicals strategy with semi-quantitative suspect/non-target screening data","authors":"Valeria Dulio, Nikiforos Alygizakis, Kelsey Ng, Emma L. Schymanski, Sandrine Andres, Katrin Vorkamp, Juliane Hollender, Saskia Finckh, Reza Aalizadeh, Lutz Ahrens, Elodie Bouhoulle, Ľuboš Čirka, Anja Derksen, Geneviève Deviller, Anja Duffek, Mar Esperanza, Stellan Fischer, Qiuguo Fu, Pablo Gago-Ferrero, Peter Haglund, Marion Junghans, Stefan A. E. Kools, Jan Koschorreck, Benjamin Lopez, Miren Lopez de Alda, Giuseppe Mascolo, Cécile Miège, Leonard Osté, Simon O’Toole, Pawel Rostkowski, Tobias Schulze, Kerry Sims, Laetitia Six, Jaroslav Slobodnik, Pierre-François Staub, Gerard Stroomberg, Nikolaos S. Thomaidis, Anne Togola, Giorgio Tomasi, Peter C. von der Ohe","doi":"10.1186/s12302-024-00936-3","DOIUrl":"10.1186/s12302-024-00936-3","url":null,"abstract":"<div><h3>Background</h3><p>Prioritisation of chemical pollutants is a major challenge for environmental managers and decision-makers alike, which is essential to help focus the limited resources available for monitoring and mitigation actions on the most relevant chemicals. This study extends the original NORMAN prioritisation scheme beyond target chemicals, presenting the integration of semi-quantitative data from retrospective suspect screening and expansion of existing exposure and risk indicators. The scheme utilises data retrieved automatically from the NORMAN Database System (NDS), including candidate substances for prioritisation, target and suspect screening data, ecotoxicological effect data, physico-chemical data and other properties. Two complementary workflows using target and suspect screening monitoring data are applied to first group the substances into six action categories and then rank the substances using exposure, hazard and risk indicators. The results from the ‘target’ and ‘suspect screening’ workflows can then be combined as multiple lines of evidence to support decision-making on regulatory and research actions.</p><h3>Results</h3><p>As a proof-of-concept, the new scheme was applied to a combined dataset of target and suspect screening data. To this end, > 65,000 substances on the NDS, of which 2579 substances supported by target wastewater monitoring data, were retrospectively screened in 84 effluent wastewater samples, totalling > 11 million data points. The final prioritisation results identified 677 substances as high priority for further actions, 7455 as medium priority and 326 with potentially lower priority for actions. Among the remaining substances, ca. 37,000 substances should be considered of medium priority with uncertainty, while it was not possible to conclude for 19,000 substances due to insufficient information from target monitoring and uncertainty in the identification from suspect screening. A high degree of agreement was observed between the categories assigned via target analysis and suspect screening-based prioritisation. Suspect screening was a valuable complementary approach to target analysis, helping to prioritise thousands of substances that are insufficiently investigated in current monitoring programmes.</p><h3>Conclusions</h3><p>This updated prioritisation workflow responds to the increasing use of suspect screening techniques. It can be adapted to different environmental compartments and can support regulatory obligations, including the identification of specific pollutants in river basins and the marine environments, as well as the confirmation of environmental occurrence levels predicted by modelling tools.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00936-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syed Muzzamil Hussain Shah, Sani I. Abba, Mohamed A. Yassin, Dahiru U. Lawal, Farouq Aliyu, Ebrahim Hamid Hussein Al-Qadami, Haris U. Qureshi, Isam H. Aljundi, Hamza A. Asmaly, Saad Sh. Sammen, Miklas Scholz
{"title":"New strategy based on Hammerstein–Wiener and supervised machine learning for identification of treated wastewater salinization in Al-Hassa region, Saudi Arabia","authors":"Syed Muzzamil Hussain Shah, Sani I. Abba, Mohamed A. Yassin, Dahiru U. Lawal, Farouq Aliyu, Ebrahim Hamid Hussein Al-Qadami, Haris U. Qureshi, Isam H. Aljundi, Hamza A. Asmaly, Saad Sh. Sammen, Miklas Scholz","doi":"10.1186/s12302-024-00914-9","DOIUrl":"10.1186/s12302-024-00914-9","url":null,"abstract":"<div><p>The agricultural sector faces challenges in managing water resources efficiently, particularly in arid regions dealing with water scarcity. To overcome water stress, treated wastewater (TWW) is increasingly utilized for irrigation purpose to conserve available freshwater resources. There are several critical aspects affecting the suitability of TWW for irrigation including salinity which can have detrimental effects on crop yield and soil health. Therefore, this study aimed to develop a novel approach for TWW salinity prediction using artificial intelligent (AI) ensembled machine learning approach. In this regard, several water quality parameters of the TWW samples were collected through field investigation from the irrigation zones in Al-Hassa, Saudi Arabia, which were later assessed in the lab. The assessment involved measuring Temperature (T), pH, Oxidation Reduction Potential (ORP), Electrical Conductivity (EC), Total Dissolved Solids (TDS), and Salinity, through an Internet of Things (IoT) based system integrated with a real-time monitoring and a multiprobe device. Based on the descriptive statistics of the data and correlation obtained through the Pearson matrix, the models were formed for predicting salinity by using the Hammerstein-Wiener Model (HWM) and Support Vector Regression (SVR). The models’ performance was evaluated using several statistical indices including correlation coefficient (R), coefficient of determination (R<sup>2</sup>), mean square error (MSE), and root mean square error (RMSE). The results revealed that the HWM-M3 model with its superior predictive capabilities achieved the best performance, with R<sup>2</sup> values of 82% and 77% in both training and testing stages. This study demonstrates the effectiveness of AI-ensembled machine learning approach for accurate TWW salinity prediction, promoting the safe and efficient utilization of TWW for irrigation in water-stressed regions. The findings contribute to a growing body of research exploring AI applications for sustainable water management.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00914-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kunle Ibukun Olatayo, Paul T. Mativenga, Annlizé L. Marnewick
{"title":"Measuring the performance and maturity of the plastic recycling value chain system: implications and prospects","authors":"Kunle Ibukun Olatayo, Paul T. Mativenga, Annlizé L. Marnewick","doi":"10.1186/s12302-024-00937-2","DOIUrl":"10.1186/s12302-024-00937-2","url":null,"abstract":"<div><p>The sustainability of plastic materials and products requires the continuous improvement of the circular pathways for the material. A key strategy in the circularity of plastic is plastic recycling. Improving the circular pathways requires an understanding of the maturity level of the plastic recycling system. This study evaluated the maturity of the plastic recycling system in South Africa across the plastic value chain. Both secondary and primary data were collected, analysed and cross-validated. The results put the maturity of the country’s system at “Visionary” (Level 3) for the value chain stages of primary plastic production, product manufacturing and recycling, whereas waste generation, collection and handling, sorting and recyclate market were rated as “Structured” (Level 2). Furthermore, a set of initiatives to advance the maturity of the system to the desired level of “Connected and Dynamic” (Level 5) were identified. The paper provides a benchmark of performance and determines the stages of the system requiring additional attention. This is aimed at providing insight into policymaking to advance plastic recycling and circularity.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00937-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellise Suffill, Mathew P. White, Sarah Hale, Sabine Pahl
{"title":"Regulating “forever chemicals”: social data are necessary for the successful implementation of the essential use concept","authors":"Ellise Suffill, Mathew P. White, Sarah Hale, Sabine Pahl","doi":"10.1186/s12302-024-00930-9","DOIUrl":"10.1186/s12302-024-00930-9","url":null,"abstract":"<div><p>Per- and polyfluoroalkyl substances (PFAS) are a large class of synthetic compounds, many of which are persistent, mobile and toxic (PMT). The sheer number of PFAS makes a substance-by-substance based approach to regulating this group unfeasible. Given the known risks of many PFAS, a precautionary approach (i.e., the Essential Use Concept; EUC) has been called for, whereby any substance is assumed to be harmful and should be phased out, unless it is shown that: (a) the use of this substance is necessary for health and safety, or is critical for the functioning of society and (b) there are no available technically and economically feasible alternatives. While experts, including chemists and toxicologists, are well-placed to assess the second criteria, determining what is necessary for the “functioning of society” requires a wider consideration of societal beliefs and preferences and greater involvement of various interested and affected parties, especially those whose voices are less heard but may be most vulnerable. The aim of the current paper is to provide a preliminary framework and research agenda outlining why and at what points in the essential use decision-making process broader societal perspectives are required, and how such ‘social data’ can be collected. The ultimate goal is to improve chemicals management by supporting citizens in becoming more informed and engaged participants in relevant debates and policies, including in how to operationalise the EUC.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00930-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piero Bellanova, Jan Schwarzbauer, Klaus Reicherter
{"title":"Inventory of aqueous and sediment-associated organic pollutants released by the 2021 flood in the Vicht–Inde catchment, Germany","authors":"Piero Bellanova, Jan Schwarzbauer, Klaus Reicherter","doi":"10.1186/s12302-024-00925-6","DOIUrl":"10.1186/s12302-024-00925-6","url":null,"abstract":"<div><h3>Background</h3><p>The European flood that occurred between July 13th and 16th 2021, was a natural disaster that caused significant damage in Central European countries, including Germany, Netherlands, Belgium, and Luxembourg. This disaster resulted in the highest number of fatalities from a natural disaster in Germany during the twenty-first century, with over 180 people losing their lives and causing damages exceeding 30 bn€. The flood caused severe destruction in small mountainous river systems such as the Vicht and Inde rivers, particularly in the German state of North Rhine-Westphalia. In addition, the flood caused a significant release of pollutants, including old burdens from the former mining area of Stolberg.</p><h3>Results</h3><p>To assess the extent of pollution caused by the flood in the affected floodplains and urban areas, this study was conducted to inventorize organic contaminants identified through a non-target screening in water and sediment samples taken immediately after the disastrous flood event. In total, 56 individual contaminants were identified from the water samples, including substances derived from urban effluents, such as personal care products, cosmetics, odors, technical additives, pharmaceuticals and surfactants. The analysis of sediment samples revealed different types of environmentally hazardous contaminants, such as petrogenics, urban effluent and wastewater indicators, chlorinated industrial compounds, and pesticides. This diverse range of pollutants and their broad dispersion across various environments in the catchment is attributed to the dynamic nature of the flood.</p><h3>Conclusion</h3><p>The inventory of identified organic contaminants raises long-term environmental concerns and potential health implications for the flood-affected Vicht–Inde region.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00925-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}