Advancements in evaporation prediction: introducing the Gated Recurrent Unit–Multi-Kernel Extreme Learning Machine (MKELM)–Gaussian Process Regression (GPR) model
Sharareh Pourebrahim, Mohammad Ehteram, Mehrdad Hadipour, Ozgur Kisi, Ahmed El-Shafie, Ali Najah Ahmed, Jit Ern Chen
{"title":"Advancements in evaporation prediction: introducing the Gated Recurrent Unit–Multi-Kernel Extreme Learning Machine (MKELM)–Gaussian Process Regression (GPR) model","authors":"Sharareh Pourebrahim, Mohammad Ehteram, Mehrdad Hadipour, Ozgur Kisi, Ahmed El-Shafie, Ali Najah Ahmed, Jit Ern Chen","doi":"10.1186/s12302-024-01028-y","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting evaporation is an essential topic in water resources management. It is critical to plan irrigation schedules, optimize hydropower production, and accurately calculate the overall water balance. Thus, researchers have developed many prediction models for predicting evaporation. Despite the development of these models, there are still unresolved challenges. These challenges include selecting the most important input parameters, handling nonstationary data, extracting critical information from data, and quantifying the uncertainty of predicted values. Thus, the main aim of this study is to address these challenges by developing a new prediction model. The new prediction model, named Gated Recurrent Unit–Multi-Kernel Extreme Learning Machine (MKELM)–Gaussian Process Regression (GPR), was used to predict one-month ahead evaporation in the Kashafrood basin, Iran. This model was executed in multiple stages. First, a feature selection algorithm was used to determine the most critical input parameters. A data processing technique was then employed to decompose nonstationary data into stationary intrinsic mode functions (IMFs). The GRU model then processed these components to extract their essential information. In the following step, the extracted information was inserted into the MKELM model to predict evaporation. Finally, the GPR model quantified the uncertainty of predicted values. Our research also introduces a new optimizer called the Salp Swarm Optimization Algorithm–Sine Cosine Optimization Algorithm. This algorithm was used to tune the model parameters. This algorithm's performance and the prediction models’ accuracy were evaluated using several error indices. According to the study results, the GRU–MKELM–GPR model performed better than other models in predicting monthly evaporation. It improved the training and testing mean absolute error values of the other models by 21%-43% and 8.2–33%, respectively. Moreover, the new model improved the R<sup>2</sup> (R-squared or coefficient of determination) values of other models by 5–12%. Generally, the main findings of this paper included the superior performance of the new model in predicting evaporation data and the superior performance of a new optimizer in adjusting model parameters. These findings highlighted the effectiveness of the suggested model in addressing the challenges associated with evaporation prediction.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01028-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-024-01028-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting evaporation is an essential topic in water resources management. It is critical to plan irrigation schedules, optimize hydropower production, and accurately calculate the overall water balance. Thus, researchers have developed many prediction models for predicting evaporation. Despite the development of these models, there are still unresolved challenges. These challenges include selecting the most important input parameters, handling nonstationary data, extracting critical information from data, and quantifying the uncertainty of predicted values. Thus, the main aim of this study is to address these challenges by developing a new prediction model. The new prediction model, named Gated Recurrent Unit–Multi-Kernel Extreme Learning Machine (MKELM)–Gaussian Process Regression (GPR), was used to predict one-month ahead evaporation in the Kashafrood basin, Iran. This model was executed in multiple stages. First, a feature selection algorithm was used to determine the most critical input parameters. A data processing technique was then employed to decompose nonstationary data into stationary intrinsic mode functions (IMFs). The GRU model then processed these components to extract their essential information. In the following step, the extracted information was inserted into the MKELM model to predict evaporation. Finally, the GPR model quantified the uncertainty of predicted values. Our research also introduces a new optimizer called the Salp Swarm Optimization Algorithm–Sine Cosine Optimization Algorithm. This algorithm was used to tune the model parameters. This algorithm's performance and the prediction models’ accuracy were evaluated using several error indices. According to the study results, the GRU–MKELM–GPR model performed better than other models in predicting monthly evaporation. It improved the training and testing mean absolute error values of the other models by 21%-43% and 8.2–33%, respectively. Moreover, the new model improved the R2 (R-squared or coefficient of determination) values of other models by 5–12%. Generally, the main findings of this paper included the superior performance of the new model in predicting evaporation data and the superior performance of a new optimizer in adjusting model parameters. These findings highlighted the effectiveness of the suggested model in addressing the challenges associated with evaporation prediction.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.