Daniel R. Schmehl, David Larsen, Camille Gomez, Lisa Ortego
{"title":"蜜蜂蜂王浆和体外幼虫饮食对微生物生物农药的抑制作用","authors":"Daniel R. Schmehl, David Larsen, Camille Gomez, Lisa Ortego","doi":"10.1186/s12302-024-01020-6","DOIUrl":null,"url":null,"abstract":"<div><p>The interest in and use of biological materials in crop production is increasing globally at a rapid pace. In many cases, testing methods for conventional chemicals are applied to microbial-based biopesticides because specific microbial test methods are lacking. However, not all methods are easily transferred to microbial-based products. An evaluation was conducted to determine if OECD (Organization for Economic Co-operation and Development) Guidance Document No. 239 on honey bee larval toxicity could be adapted to microbial pesticides. In our study, five microbes, including <i>B. pumilus, B. thuringiensis, B. velezensis, Paenibacillus larvae, and Ascophaera apis</i> were grown on agar media and spotted with either honey bee in vitro larval diet or royal jelly. We observed that the honey bee larval bee diet and royal jelly did not inhibit the fungal honey bee pathogen <i>Ascophaera apis,</i> yet inhibited the growth of bacteria, including a known honey bee larval pathogen. This finding may make the test unreliable for certain biopesticides. The OECD is considering biopesticide-specific testing guidelines, and the EPA has indicated it to update itsbiopesticide bee test guidelines. However, additional research is needed to determine which options may be feasible and provide the best improvements.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-01020-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Microbial biopesticides are inhibited by honey bee royal jelly and in vitro larval diet\",\"authors\":\"Daniel R. Schmehl, David Larsen, Camille Gomez, Lisa Ortego\",\"doi\":\"10.1186/s12302-024-01020-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interest in and use of biological materials in crop production is increasing globally at a rapid pace. In many cases, testing methods for conventional chemicals are applied to microbial-based biopesticides because specific microbial test methods are lacking. However, not all methods are easily transferred to microbial-based products. An evaluation was conducted to determine if OECD (Organization for Economic Co-operation and Development) Guidance Document No. 239 on honey bee larval toxicity could be adapted to microbial pesticides. In our study, five microbes, including <i>B. pumilus, B. thuringiensis, B. velezensis, Paenibacillus larvae, and Ascophaera apis</i> were grown on agar media and spotted with either honey bee in vitro larval diet or royal jelly. We observed that the honey bee larval bee diet and royal jelly did not inhibit the fungal honey bee pathogen <i>Ascophaera apis,</i> yet inhibited the growth of bacteria, including a known honey bee larval pathogen. This finding may make the test unreliable for certain biopesticides. The OECD is considering biopesticide-specific testing guidelines, and the EPA has indicated it to update itsbiopesticide bee test guidelines. However, additional research is needed to determine which options may be feasible and provide the best improvements.</p></div>\",\"PeriodicalId\":546,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s12302-024-01020-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-024-01020-6\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-024-01020-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microbial biopesticides are inhibited by honey bee royal jelly and in vitro larval diet
The interest in and use of biological materials in crop production is increasing globally at a rapid pace. In many cases, testing methods for conventional chemicals are applied to microbial-based biopesticides because specific microbial test methods are lacking. However, not all methods are easily transferred to microbial-based products. An evaluation was conducted to determine if OECD (Organization for Economic Co-operation and Development) Guidance Document No. 239 on honey bee larval toxicity could be adapted to microbial pesticides. In our study, five microbes, including B. pumilus, B. thuringiensis, B. velezensis, Paenibacillus larvae, and Ascophaera apis were grown on agar media and spotted with either honey bee in vitro larval diet or royal jelly. We observed that the honey bee larval bee diet and royal jelly did not inhibit the fungal honey bee pathogen Ascophaera apis, yet inhibited the growth of bacteria, including a known honey bee larval pathogen. This finding may make the test unreliable for certain biopesticides. The OECD is considering biopesticide-specific testing guidelines, and the EPA has indicated it to update itsbiopesticide bee test guidelines. However, additional research is needed to determine which options may be feasible and provide the best improvements.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.