{"title":"Microphysical Properties and Turbulence Evolution Characteristics of a Typical Coastal Fog Event in the Beibu Gulf, China","authors":"Lu Qianqian, Zheng Fengqin, Luo Shengyan","doi":"10.1029/2024EA003835","DOIUrl":"https://doi.org/10.1029/2024EA003835","url":null,"abstract":"<p>A fog field observation experiment was carried out in the Beibu Gulf, Guangxi, China from February to April of 2023, with observational instruments including fog monitor, visibility meters, and the three-dimensional ultrasonic anemometer. This study is the first to use the field observation data conducting a fog microphysics in this area. A dense coastal fog case during 10–11 February 2023 is chosen to understand the evolution of the microphysical characteristic parameters, dominant microphysical processes, as well as the turbulence characteristics. The main results are as follow: (a) The average values of fog droplets number concentration(N), liquid water content (LWC), average diameter (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mover>\u0000 <mi>D</mi>\u0000 <mo>‾</mo>\u0000 </mover>\u0000 </mrow>\u0000 <annotation> $overline{D}$</annotation>\u0000 </semantics></math>), are 6.5 cm<sup>−3</sup>,0.0005 gm<sup>−3</sup> and 3.1 μm, respectively. The N and LWC over the Beibu Gulf are much lower than those in other coastal areas of China. (b) The droplet size distribution of the Beibu Gulf fog is monotonically decreasing, with peak diameter of 2.8 μm. The average droplet number distribution roughly conforms to the Junge distribution. (c) For the whole coastal fog event, condensation nucleation and droplet condensation growth are the dominant processes, and well-developed turbulence is observed. (d) During the development stage of this fog, condensation nucleation and condensation growth is the dominant processes; in the mature stage, turbulence is relatively stable, and the collision process plays a dominant role; during the dissipation stage, there is evaporation of fog droplets.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003835","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graziella Caprarelli, David Baratoux, Cinzia Cervato, Paolo Diviacco, Alina Donea, Steven J. Fletcher, Subrahmanyam Bulusu, Helen M. Glaves, Cathleen E. Jones, Astrid Maute, Franklin P. Mills, Sara C. Pryor, Kristy Tiampo, Zunyi Xie
{"title":"Thank You to Our 2024 Reviewers","authors":"Graziella Caprarelli, David Baratoux, Cinzia Cervato, Paolo Diviacco, Alina Donea, Steven J. Fletcher, Subrahmanyam Bulusu, Helen M. Glaves, Cathleen E. Jones, Astrid Maute, Franklin P. Mills, Sara C. Pryor, Kristy Tiampo, Zunyi Xie","doi":"10.1029/2025EA004332","DOIUrl":"https://doi.org/10.1029/2025EA004332","url":null,"abstract":"<p>The Editors and Staff of <i>Earth and Space Science</i> thank the reviewers whose selfless work has significantly contributed to the publication process of papers highlighting the best research in geophysics, planetary, and space science in 2024. Peer-reviewing is a demanding and thankless job. It is however an essential component of the scientific process, requiring the highest standards of integrity and rigor. Reviewers check data and procedures and test reproducibility of methods and results; they share their expertise to verify that the interpretations and conclusions of a paper are consistent with assumptions and existing knowledge. Without this essential work, it would not be possible to trust in the scientific process. Publication of papers in a multidisciplinary journal such as <i>Earth and Space Science</i>, that highlights methods, instruments, data and algorithms, relies directly on the expertise of its reviewers to verify and vouch for the quality of the papers that are published. We are indebted to all our reviewers and are delighted to acknowledge them publicly in this Editorial.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lily A. Clough, Victoria Da Poian, Jonathan D. Major, Lauren M. Seyler, Brett A. McKinney, Bethany P. Theiling
{"title":"Interpretable Machine Learning Biosignature Detection From Ocean Worlds Analogue CO2 Isotopologue Data","authors":"Lily A. Clough, Victoria Da Poian, Jonathan D. Major, Lauren M. Seyler, Brett A. McKinney, Bethany P. Theiling","doi":"10.1029/2024EA003966","DOIUrl":"https://doi.org/10.1029/2024EA003966","url":null,"abstract":"<p>Future missions to icy ocean worlds (OW) such as Europa and Enceladus will evaluate the habitability and potential for biosignatures on these worlds. These missions will benefit from autonomous science and machine learning (ML) methods to process high volumes of data and prioritize signals of interest for the first available downlink. Mass spectrometers (MS) are suitable instruments for implementing science autonomy due to their rich spectral data products and potential for biosignature detection. Light stable isotopes are strong candidates for biosignatures due to the large fractionations promoted by biological activity. However, complex abiotic geochemistry may obscure or mimic biogenic isotope fractionations. ML may accurately disentangle biosignatures from abiotic mimicry in MS data; however, ML model predictions can be inscrutable to human interpretation, compromising trust in scientifically significant detections. We develop and test a new biosignature detection ML model using a novel, laboratory-generated, CO<sub>2</sub> isotopologue data set of analogue OW samples. These data include various potential OW seawater chemistries and biotic mimicry. Our ML approach includes feature (variable) construction, providing mathematical and geochemical context for biosignatures, and a feature selection method called Nearest-neighbors Projected Distance Regression (NPDR) that identifies important predictors. Our Random Forest biosignature model predicts the presence of biosignatures with 87.3% mean accuracy regardless of the sample brine chemistry. We add network visualization of main effects and statistical interactions for interpretation of model prediction mechanisms. We use single-sample (local) variable importance scores to diagnose false predictions for individual samples, which is crucial for trust in astrobiology ML biosignature models.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003966","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingchuan Wang, Nicholas C. Schmerr, Vedran Lekić, Jacob Giles, Linden Wike, Austin Hoyle, Ernest Robert Bell, Naoma McCall, Jacob A. Richardson, Patrick Whelley, John D. West, Shannon Rees, Casey Braccia, Caela Barry, Jose M. Hurtado, Tara Sweeney, Nohemi Valenzuela
{"title":"Active Seismic Exploration of Planetary Subsurfaces via Compressive Sensing","authors":"Jingchuan Wang, Nicholas C. Schmerr, Vedran Lekić, Jacob Giles, Linden Wike, Austin Hoyle, Ernest Robert Bell, Naoma McCall, Jacob A. Richardson, Patrick Whelley, John D. West, Shannon Rees, Casey Braccia, Caela Barry, Jose M. Hurtado, Tara Sweeney, Nohemi Valenzuela","doi":"10.1029/2024EA003828","DOIUrl":"https://doi.org/10.1029/2024EA003828","url":null,"abstract":"<p>Geophysical measurements, such as seismic experiments, are a key target for scientific activities on planetary surfaces. Dense spatial sampling of such measurements is often desirable, and acquisition is traditionally performed at regular intervals. However, achieving regular and dense spatial sampling is made difficult by obstacles and operational constraints of a planetary surface mission. Here, we present an application of compressive sensing (CS) in the design of seismic surveys on planetary surfaces for imaging the shallow subsurface. This approach is based on more flexible, randomized subsampling and requires fewer sources or receivers compared to traditional methods. We illustrate the potential of CS on synthetic data and measurements made along an active seismic transect across a lunar analog site. We then explore the use of CS-assisted seismic acquisition at a terrestrial analog site in the San Francisco Volcanic Field. We show how irregularly acquired data can be interpolated to reconstruct data at finer spatial sampling and yield seismic images comparable to those from regularly acquired high-density data. Finally, we apply our approach to reanalyze the legacy data collected by the Active Seismic Experiments during the Apollo 14 and 16 missions. The results show that the CS method can recover missing data and increase the amount of data available for refraction analysis. Our study highlights the potential of CS in future planetary surface exploration missions for (a) an order-of-magnitude improvement in survey efficiency and (b) improved imaging quality to gain a deeper understanding of the geologic processes of planetary bodies.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003828","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. L. Xu, Y. B. Yang, Y. M. Deng, C. Y. Sun, Z. N. Su, C. H. Feng, S. L. Shi
{"title":"Geophysics Indicator of Sandstone-Type Uranium Mineralization in the Northern Ordos Basin, China: Analysis From Gravity and Magnetic Data","authors":"M. L. Xu, Y. B. Yang, Y. M. Deng, C. Y. Sun, Z. N. Su, C. H. Feng, S. L. Shi","doi":"10.1029/2024EA003521","DOIUrl":"https://doi.org/10.1029/2024EA003521","url":null,"abstract":"<p>Ordos Basin, one of the largest uranium resource areas in China, holds significant potential due to its favorable metallogenic geological conditions and promising potential. Early exploration efforts primarily targeted sandstone-hosted uranium deposits. Recently, the discovery of several large and super-large sandstone-type uranium deposits has revealed previously unrecognized uranium-bearing formations. However, these newly identified formations have yet to undergo systematic research on their geological conditions and metallogenesis processes, highlighting the urgent need for further investigation to advance metallogenic theory. Additionally, fault structures, which are critical to the metalization process, remain insufficiently described due to lack of comprehensive geophysical data. To bridge this gap, this study employs areal data to characterize the geophysical signatures of both traditional and newly discovered ore-bearing formations. The research delineates the distributions of primary and secondary faults, analyzes the characteristic of basement relief, and integrates basin evolution with key metallogenic factors utilizing gravity and magnetic exploration. Furthermore, the study identifies two promising metallogenic zones, offering essential insights to guide future exploration, resource development, and efficient exploitation strategies.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003521","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephen P. Scheidt, David A. Crown, Daniel C. Berman
{"title":"Mapping Fluvial Valleys on the Flanks of Alba Mons: Implications for Amazonian Watershed Development in Northern Tharsis, Mars","authors":"Stephen P. Scheidt, David A. Crown, Daniel C. Berman","doi":"10.1029/2024EA003967","DOIUrl":"https://doi.org/10.1029/2024EA003967","url":null,"abstract":"<p>This study characterizes fluvial activity on Alba Mons using a combination of image and topographic data to inform photogeologic interpretation and hydrological modeling. We produced a comprehensive digital inventory of fluvial valleys that documents the extensive dendritic and parallel drainage patterns dissecting Early Amazonian volcanic materials. Drainage density was correlated with regional slopes. On the summit and southern flanks, valleys are sparse and regional slopes are less steep, between 0.0° and 0.3° (average 0.4° ± 0.2°). Areas with higher drainage density (average 0.24 km<sup>−1</sup>; locally >0.5 km<sup>−1</sup>) have steeper regional slopes, between 0.1° and 2.9° (average 1.0° ± 0.4°). Ridged lava tubes and tabular lava flows represent local topographic highs that exert a strong influence on drainage patterns, but are also locally eroded by fluvial valleys. Graben formation and ice-rich mantle deposition complicate analyses by altering fluvial features. For two case studies, we employed an integrated approach that combined mapping and hydrological modeling to create watershed reconstructions that allowed robust morphometric analyses of drainage basins and the contained valley networks. Mapping shows well-preserved drainage patterns with morphometry and hypsometry that support a prolonged history of erosion and development into mature drainage networks. Modeling provides characterization of the downstream parts of drainage basins that are largely obscured. These results have climate implications, suggesting fluvial dissection resulted from widespread precipitation with possible contributions from meltwater related to periodic accumulation of ice-rich surface deposits.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003967","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Chen, Shengjun Zhang, Ole Baltazar Andersen, Yongjun Jia
{"title":"Along-Track Marine Geoid Resolution Enhancement With SWOT","authors":"Xu Chen, Shengjun Zhang, Ole Baltazar Andersen, Yongjun Jia","doi":"10.1029/2024EA003893","DOIUrl":"https://doi.org/10.1029/2024EA003893","url":null,"abstract":"<p>Satellite altimetry has been the major data source for marine geoid determination·and gravity recovery in recent decades. In general, altimetry-derived geoid and gravity anomaly models are typically released with a 1' × 1' gridding interval. However, their actual spatial resolution is far lower than the nominal ∼2 km level. Therefore, analyzing the marine geoid resolution capability from satellite altimetry observations is crucial for marine gravity recovery studies. The Surface Water and Ocean Topography (SWOT) Mission is a newly launched satellite using advanced radar technology to make headway in observing the·variability of water surface elevations, providing new information through along-track and across-track two-dimensional swath observations. Here, we present the analysis results of marine geoid resolution capability for both typical conventional nadir altimeters and the SWOT Ka-band radar interferometer (KaRIn) in 2° × 2° bins worldwide between 60°N and 60°S. We demonstrate the potential of SWOT KaRIn to capture along-track short-wavelength signals below 10 km and analyze the bin-based statistics of key marine geophysical factors correlated with this marine geoid resolution capability. Generally, SWOT KaRIn exhibits better marine geoid resolution capability over bins with large-scale seamounts or trenches.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003893","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. E. Cordonnier, K. S. Obenberger, J. M. Holmes, G. B. Taylor, D. Vida
{"title":"Connections Between Meteor Persistent Trains and Ozone Content in the Mesopause Region","authors":"L. E. Cordonnier, K. S. Obenberger, J. M. Holmes, G. B. Taylor, D. Vida","doi":"10.1029/2024EA003704","DOIUrl":"https://doi.org/10.1029/2024EA003704","url":null,"abstract":"<p>Ozone (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${mathrm{O}}_{3}$</annotation>\u0000 </semantics></math>) is an important trace species in the mesopause region of Earth's atmosphere and is difficult to directly probe. We found that the percentage of sporadic meteors that produced persistent trains (PTs) exhibit semiannual variations which are strongly correlated with those of the average peak <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${mathrm{O}}_{3}$</annotation>\u0000 </semantics></math> volume mixing ratio (vmr) of the secondary ozone maximum (near the mesopause, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∼</mo>\u0000 </mrow>\u0000 <annotation> ${sim} $</annotation>\u0000 </semantics></math>90–95 km). PTs are long-lasting, self-emitting phenomena that occasionally form after a meteor, thought to arise from exothermic reactions between meteoric metals and atmospheric <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${mathrm{O}}_{3}$</annotation>\u0000 </semantics></math>. The observed correlation between PT rates and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${mathrm{O}}_{3}$</annotation>\u0000 </semantics></math> essentially confirms ozone's necessity for the endurance of PTs in the continuum emission regime. Owing to this correlation, we were also able to develop a simple relationship between these two quantities providing an easy method of estimating <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${mathrm{O}}_{3}$</annotation>\u0000 </semantics></math> in the mesopause region using the monthly sporadic PT occurrence rates. This represents a new, ground-based technique for estimating <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 ","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongxin Luo, Zhiqiang Lin, Minhong Song, Xiuping Yao, Jinjian Li
{"title":"Serial Clustering of Tibetan Plateau Vortices and Its Relationship With Atmospheric Quasi-Biweekly Oscillation Revealed by a Database Derived From Multiple Reanalysis","authors":"Hongxin Luo, Zhiqiang Lin, Minhong Song, Xiuping Yao, Jinjian Li","doi":"10.1029/2024EA004040","DOIUrl":"https://doi.org/10.1029/2024EA004040","url":null,"abstract":"<p>Tibetan Plateau vortices (TPVs) are the major precipitation-producing weather system, which dominates the water supplies over the TP. Serial clustering is one of the basic features of TPVs and is closely related to the atmospheric intraseasonal oscillation of the TP. Through a database of TPVs derived from multiple reanalysis data sets, we investigated the spatiotemporal characteristics of TPV clustering (TPVC) and its connection with the atmospheric quasi-biweekly oscillation (QBWO). The TPV tracks from variant reanalysis data sets reproduced consistent features for TPVC. The database revealed that the TPVC primarily occurs during the warm season and exhibits significant interannual variability. TPV clustering frequently occurs during the positive phase of the QBWO, in which the TP emerges cyclonic anomalies at lower atmospheric levels and anticyclonic anomalies at upper levels. This configuration creates a baroclinic structure that favors the formation of TPVCs. Conversely, the negative phase of QBWO results in an inverse atmospheric anomaly pattern, reducing TPVC occurrences. The interannual variability of TPVCs is primarily influenced by the amplitude of relative vorticity rather than the frequency of positive or negative phases. Furthermore, there are distinct differences in circulation patterns between years with high and low TPVC frequencies. In high-TPVC (low-TPVC) years, the lower levels of the TP predominantly show positive (negative) vorticity anomalies, accompanied by an anticyclone (cyclone) in the northern TP and a cyclone (anticyclone) in the eastern TP, while an anti-cyclonic (cyclonic) anomaly is active over the TP that indicates an intensified (weakened) South Asian High.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Analysis of a Global Refractive Index of Water Data Layer for Spaceborne and Airborne Bathymetric Lidar","authors":"James T. Dietrich, Christopher E. Parrish","doi":"10.1029/2024EA004106","DOIUrl":"https://doi.org/10.1029/2024EA004106","url":null,"abstract":"<p>After over a half-century of development, bathymetric lidar is a mature and widely used technology for mapping the littoral zone in support of nautical charting, benthic habitat assessment, inundation modeling and other applications. In 2018, bathymetric lidar transitioned from a purely airborne technology to also a spaceborne capability with the launch of NASA's ICESat-2 satellite. An important aspect of obtaining accurate seafloor elevations and horizontal coordinates in bathymetric lidar is refraction correction, which corrects for the change in the speed and direction of the laser at the air-water interface. Unfortunately, data on the refractive index of seawater needed for correction are largely lacking, especially over global extents, which are required for ICESat-2 bathymetry. This study developed and evaluated a new global refractive index of water data layer. A two-phased sensitivity analysis was conducted to investigate how systematic and random uncertainties in the refractive index layers impact bathymetric lidar uncertainty. We then developed the global refractive index of water layer using global marine data sets and evaluated it using a combination of Argo Float data and in situ refractometer measurements. The results provide a strong indication of the usefulness of the global refractive index layer, which is currently being implanted into the workflow for generating a new ICESat-2 bathymetric data set (ATL24). To benefit other studies, the global refractive index layer is publicly available. Future improvements are possible, leveraging crowd-sourced data collection to continually improve the spatial resolution and nearshore accuracy of the refractive index data set.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}