Predictions of Equatorial Vertical Plasma Drift Using TEC Data and a Neural Network Model

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
S. A. Reddy, X. Pi, C. Forsyth, A. Aruliah, A. Smith
{"title":"Predictions of Equatorial Vertical Plasma Drift Using TEC Data and a Neural Network Model","authors":"S. A. Reddy,&nbsp;X. Pi,&nbsp;C. Forsyth,&nbsp;A. Aruliah,&nbsp;A. Smith","doi":"10.1029/2024EA004167","DOIUrl":null,"url":null,"abstract":"<p>Vertical plasma drift, <i>v</i><sub><i>z</i></sub>, plays a key role in the dynamics, morphology, and space weather effects of the equatorial and low latitude ionosphere. Modeling the drift has been an on-going effort for climatology-based prediction. To address daily prediction, the <i>Vertical drIfts</i>: <i>Predicting Equatorial ionospheRic dynamics</i> (VIPER) model has been developed. VIPER is a machine learning model that is trained on total electron content (TEC) data to predict low-latitude vertical plasma drift observed by the C/NOFS mission across the period 2009–2015. The uniqueness of VIPER is that it uses TEC data for the prediction, and the data is globally and readily available. A Gaussian fitting routine is developed to strengthen the link between TEC and <i>v</i><sub><i>z</i></sub>. VIPER is a multi-layer perceptron framework with Monte Carlo (MC) uncertainty estimation capabilities. It has a mean absolute error of 8.3 m/s, an R of 0.89/1, and a skill of 0.78/1, all of which are strong scores. The model is capped at quiet and unsettled activity levels (Kp &lt; 3). MC analysis reveals that predictions should be interpreted as distributions and the uncertainty can vary with distributions of TEC data and regions of prediction even if the predicted value is the same. VIPER offers longitudinally global coverage and uncertainty estimation capabilities. It could also be expanded to handle storm-time conditions with additional work.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA004167","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Vertical plasma drift, vz, plays a key role in the dynamics, morphology, and space weather effects of the equatorial and low latitude ionosphere. Modeling the drift has been an on-going effort for climatology-based prediction. To address daily prediction, the Vertical drIfts: Predicting Equatorial ionospheRic dynamics (VIPER) model has been developed. VIPER is a machine learning model that is trained on total electron content (TEC) data to predict low-latitude vertical plasma drift observed by the C/NOFS mission across the period 2009–2015. The uniqueness of VIPER is that it uses TEC data for the prediction, and the data is globally and readily available. A Gaussian fitting routine is developed to strengthen the link between TEC and vz. VIPER is a multi-layer perceptron framework with Monte Carlo (MC) uncertainty estimation capabilities. It has a mean absolute error of 8.3 m/s, an R of 0.89/1, and a skill of 0.78/1, all of which are strong scores. The model is capped at quiet and unsettled activity levels (Kp < 3). MC analysis reveals that predictions should be interpreted as distributions and the uncertainty can vary with distributions of TEC data and regions of prediction even if the predicted value is the same. VIPER offers longitudinally global coverage and uncertainty estimation capabilities. It could also be expanded to handle storm-time conditions with additional work.

利用TEC数据和神经网络模型预测赤道垂直等离子体漂移
垂直等离子体漂移(vz)在赤道和低纬度电离层的动力学、形态和空间天气效应中起着关键作用。为基于气候学的预测建立漂移模型一直是一项持续的努力。为了解决日常预测问题,已经开发了垂直漂移:预测赤道电离层动力学(VIPER)模型。VIPER是一个基于总电子含量(TEC)数据训练的机器学习模型,用于预测C/NOFS任务在2009-2015年期间观测到的低纬度垂直等离子体漂移。VIPER的独特之处在于它使用TEC数据进行预测,而且这些数据是全球性的,随时可用。为了加强TEC和vz之间的联系,提出了一种高斯拟合程序。VIPER是一个具有蒙特卡罗(MC)不确定性估计能力的多层感知器框架。它的平均绝对误差为8.3 m/s, R为0.89/1,技能为0.78/1,都是很强的分数。该模型被限制在安静和不稳定的活动水平(Kp <;3). MC分析表明,预测应被解释为分布,即使预测值相同,不确定性也会随着TEC数据和预测区域的分布而变化。VIPER提供纵向全球覆盖和不确定性估计能力。它还可以通过额外的工作进行扩展,以应对风暴期间的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信