DeFault: DEep-Learning-Based FAULT Delineation Using the IBDP Passive Seismic Data at the Decatur CO2 Storage Site

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Hanchen Wang, Yinpeng Chen, Tariq Alkhalifah, Ting Chen, Youzuo Lin, David Alumbaugh
{"title":"DeFault: DEep-Learning-Based FAULT Delineation Using the IBDP Passive Seismic Data at the Decatur CO2 Storage Site","authors":"Hanchen Wang,&nbsp;Yinpeng Chen,&nbsp;Tariq Alkhalifah,&nbsp;Ting Chen,&nbsp;Youzuo Lin,&nbsp;David Alumbaugh","doi":"10.1029/2023EA003422","DOIUrl":null,"url":null,"abstract":"<p>The carbon capture, utilization, and storage (CCUS) framework is an essential component in reducing greenhouse gas emissions, with its success hinging on the comprehensive knowledge of subsurface geology and geomechanics. Passive seismic event relocation and fault detection offer vital insights into subsurface structures and the ability to monitor fluid migration pathways. Accurate identification and localization of seismic events, however, face significant challenges, including the necessity for high-quality seismic data and advanced computational methods. To address these challenges, we introduce a novel deep learning method, <span></span><math>\n <semantics>\n <mrow>\n <mi>DeFault</mi>\n </mrow>\n <annotation> $\\mathit{DeFault}$</annotation>\n </semantics></math>, specifically designed for passive seismic source relocation and fault delineating for passive seismic monitoring projects. By leveraging data domain-adaptation, <span></span><math>\n <semantics>\n <mrow>\n <mi>DeFault</mi>\n </mrow>\n <annotation> $\\mathit{DeFault}$</annotation>\n </semantics></math> allows us to train a neural network with labeled synthetic data and apply it directly to field data. Using <span></span><math>\n <semantics>\n <mrow>\n <mi>DeFault</mi>\n </mrow>\n <annotation> $\\mathit{DeFault}$</annotation>\n </semantics></math>, the passive seismic sources are automatically clustered based on their recording time and spatial locations, and subsequently, faults and fractures are delineated accordingly. We demonstrate the efficacy of <span></span><math>\n <semantics>\n <mrow>\n <mi>DeFault</mi>\n </mrow>\n <annotation> $\\mathit{DeFault}$</annotation>\n </semantics></math> on a field case study involving <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> injection related microseismic data from Decatur, Illinois area. Our approach accurately and efficiently relocated passive seismic events, identified faults and could aid in potential damage induced by seismicity. Our results highlight the potential of <span></span><math>\n <semantics>\n <mrow>\n <mi>DeFault</mi>\n </mrow>\n <annotation> $\\mathit{DeFault}$</annotation>\n </semantics></math> as a valuable tool for passive seismic monitoring, emphasizing its role in ensuring CCUS project safety. This research bolsters the understanding of subsurface characterization in CCUS, illustrating machine learning’s capacity to refine these methods. Ultimately, our work has significant implications for CCUS technology deployment, an essential strategy in combating climate change.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003422","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003422","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon capture, utilization, and storage (CCUS) framework is an essential component in reducing greenhouse gas emissions, with its success hinging on the comprehensive knowledge of subsurface geology and geomechanics. Passive seismic event relocation and fault detection offer vital insights into subsurface structures and the ability to monitor fluid migration pathways. Accurate identification and localization of seismic events, however, face significant challenges, including the necessity for high-quality seismic data and advanced computational methods. To address these challenges, we introduce a novel deep learning method, DeFault $\mathit{DeFault}$ , specifically designed for passive seismic source relocation and fault delineating for passive seismic monitoring projects. By leveraging data domain-adaptation, DeFault $\mathit{DeFault}$ allows us to train a neural network with labeled synthetic data and apply it directly to field data. Using DeFault $\mathit{DeFault}$ , the passive seismic sources are automatically clustered based on their recording time and spatial locations, and subsequently, faults and fractures are delineated accordingly. We demonstrate the efficacy of DeFault $\mathit{DeFault}$ on a field case study involving CO 2 ${\text{CO}}_{2}$ injection related microseismic data from Decatur, Illinois area. Our approach accurately and efficiently relocated passive seismic events, identified faults and could aid in potential damage induced by seismicity. Our results highlight the potential of DeFault $\mathit{DeFault}$ as a valuable tool for passive seismic monitoring, emphasizing its role in ensuring CCUS project safety. This research bolsters the understanding of subsurface characterization in CCUS, illustrating machine learning’s capacity to refine these methods. Ultimately, our work has significant implications for CCUS technology deployment, an essential strategy in combating climate change.

默认值:使用IBDP被动地震数据在Decatur CO2储存站点进行基于深度学习的断层圈定
碳捕获、利用和封存(CCUS)框架是减少温室气体排放的重要组成部分,其成功与否取决于对地下地质和地质力学的全面了解。被动地震事件定位和断层检测为了解地下结构和监测流体运移路径提供了重要的信息。然而,准确识别和定位地震事件面临着重大挑战,包括需要高质量的地震数据和先进的计算方法。为了解决这些挑战,我们引入了一种新的深度学习方法DeFault $\mathit{DeFault}$,专门为被动地震监测项目的被动震源定位和断层圈定设计。通过利用数据域自适应,DeFault $\mathit{DeFault}$允许我们用标记的合成数据训练神经网络,并将其直接应用于现场数据。利用DeFault $\mathit{DeFault}$,根据被动震源的记录时间和空间位置自动聚类,并据此圈定断层和裂缝。我们在伊利诺伊州迪凯特地区的一个涉及CO 2 ${\text{CO}}_{2}$注入相关微地震数据的现场案例研究中证明了DeFault $\mathit{DeFault}$的有效性。我们的方法可以准确有效地重新定位被动地震事件,识别断层,并有助于地震活动引起的潜在损害。我们的研究结果突出了DeFault $\mathit{DeFault}$作为被动地震监测的有价值工具的潜力,强调了它在确保CCUS项目安全方面的作用。这项研究加强了对CCUS中地下特征的理解,说明了机器学习改进这些方法的能力。最终,我们的工作对CCUS技术部署具有重要意义,CCUS技术部署是应对气候变化的重要战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信