Yuyang Zhang;Gongning Luo;Wei Wang;Shaodong Cao;Suyu Dong;Daren Yu;Xiaoyun Wang;Kuanquan Wang
{"title":"TTN: Topological Transformer Network for Automated Coronary Artery Branch Labeling in Cardiac CT Angiography","authors":"Yuyang Zhang;Gongning Luo;Wei Wang;Shaodong Cao;Suyu Dong;Daren Yu;Xiaoyun Wang;Kuanquan Wang","doi":"10.1109/JTEHM.2023.3329031","DOIUrl":"10.1109/JTEHM.2023.3329031","url":null,"abstract":"Objective: Existing methods for automated coronary artery branch labeling in cardiac CT angiography face two limitations: 1) inability to model overall correlation of branches, since differences between branches cannot be captured directly. 2) a serious class imbalance between main and side branches. Methods and procedures: Inspired by the application of Transformer in sequence data, we propose a topological Transformer network (TTN), which solves the vessel branch labeling from a novel perspective of sequence labeling learning. TTN detects differences between branches by establishing their overall correlation. A topological encoding that represents the positions of vessel segments in the artery tree, is proposed to assist the model in classifying branches. Also, a segment-depth loss is introduced to solve the class imbalance between main and side branches. Results: On a dataset with 325 CCTA, our method obtains the best overall result on all branches, the best result on side branches, and a competitive result on main branches. Conclusion: TTN solves two limitations in existing methods perfectly, thus achieving the best result in coronary artery branch labeling task. It is the first Transformer based vessel branch labeling method and is notably different from previous methods. Clinical impact: This Pre-Clinical Research can be integrated into a computer-aided diagnosis system to generate cardiovascular disease diagnosis report, assisting clinicians in locating the atherosclerotic plaques.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"129-139"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10304172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135319101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheik Mohammed Ali;Sridhar Poosapadi Arjunan;James Peter;Laura Perju-Dumbrava;Catherine Ding;Michael Eller;Sanjay Raghav;Peter Kempster;Mohammod Abdul Motin;P. J. Radcliffe;Dinesh Kant Kumar
{"title":"Wearable Accelerometer and Gyroscope Sensors for Estimating the Severity of Essential Tremor","authors":"Sheik Mohammed Ali;Sridhar Poosapadi Arjunan;James Peter;Laura Perju-Dumbrava;Catherine Ding;Michael Eller;Sanjay Raghav;Peter Kempster;Mohammod Abdul Motin;P. J. Radcliffe;Dinesh Kant Kumar","doi":"10.1109/JTEHM.2023.3329344","DOIUrl":"10.1109/JTEHM.2023.3329344","url":null,"abstract":"Background: Several validated clinical scales measure the severity of essential tremor (ET). Their assessments are subjective and can depend on familiarity and training with scoring systems. Method: We propose a multi-modal sensing using a wearable inertial measurement unit for estimating scores on the Fahn-Tolosa-Marin tremor rating scale (FTM) and determine the classification accuracy within the tremor type. 17 ET participants and 18 healthy controls were recruited for the study. Two movement disorder neurologists who were blinded to prior clinical information viewed video recordings and scored the FTM. Participants drew a guided Archimedes spiral while wearing an inertial measurement unit placed at the mid-point between the lateral epicondyle of the humerus and the anatomical snuff box. Acceleration and gyroscope recordings were analyzed. The ratio of the power spectral density between frequency bands 0.5-4 Hz and 4–12 Hz, and the sum of power spectrum density over the entire spectrum of 2–74 Hz, for both accelerometer and gyroscope data, were computed. FTM was estimated using regression model and classification using SVM was validated using the leave-one-out method. Results: Regression analysis showed a moderate to good correlation when individual features were used, while correlation was high (\u0000<inline-formula> <tex-math>$r^{2}$ </tex-math></inline-formula>\u0000 = 0.818) when suitable features of the gyro and accelerometer were combined. The accuracy for two-class classification of the combined features using SVM was 91.42% while for four-class it was 68.57%. Conclusion: Potential applications of this novel wearable sensing method using a wearable Inertial Measurement Unit (IMU) include monitoring of ET and clinical trials of new treatments for the disorder.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"194-203"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10304233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135319103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodina Bassiouny;Adel Mohamed;Karthi Umapathy;Naimul Khan
{"title":"An Interpretable Neonatal Lung Ultrasound Feature Extraction and Lung Sliding Detection System Using Object Detectors","authors":"Rodina Bassiouny;Adel Mohamed;Karthi Umapathy;Naimul Khan","doi":"10.1109/JTEHM.2023.3327424","DOIUrl":"10.1109/JTEHM.2023.3327424","url":null,"abstract":"The objective of this study was to develop an interpretable system that could detect specific lung features in neonates. A challenging aspect of this work was that normal lungs showed the same visual features (as that of Pneumothorax (PTX)). M-mode is typically necessary to differentiate between the two cases, but its generation in clinics is time-consuming and requires expertise for interpretation, which remains limited. Therefore, our system automates M-mode generation by extracting Regions of Interest (ROIs) without human in the loop. Object detection models such as faster Region Based Convolutional Neural Network (fRCNN) and RetinaNet models were employed to detect seven common Lung Ultrasound (LUS) features. fRCNN predictions were then stored and further used to generate M-modes. Beyond static feature extraction, we used a Hough transform based statistical method to detect “lung sliding” in these M-modes. Results showed that fRCNN achieved a greater mean Average Precision (mAP) of 86.57% (Intersection-over-Union (IoU) = 0.2) than RetinaNet, which only displayed a mAP of 61.15%. The calculated accuracy for the generated RoIs was 97.59% for Normal videos and 96.37% for PTX videos. Using this system, we successfully classified 5 PTX and 6 Normal video cases with 100% accuracy. Automating the process of detecting seven prominent LUS features addresses the time-consuming manual evaluation of Lung ultrasound in a fast paced environment. Clinical impact: Our research work provides a significant clinical impact as it provides a more accurate and efficient method for diagnosing lung diseases in neonates.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"119-128"},"PeriodicalIF":3.4,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10295523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134981016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edoardo M. Polo;Andrea Farabbi;Maximiliano Mollura;Alessia Paglialonga;Luca Mainardi;Riccardo Barbieri
{"title":"Comparative Assessment of Physiological Responses to Emotional Elicitation by Auditory and Visual Stimuli","authors":"Edoardo M. Polo;Andrea Farabbi;Maximiliano Mollura;Alessia Paglialonga;Luca Mainardi;Riccardo Barbieri","doi":"10.1109/JTEHM.2023.3324249","DOIUrl":"10.1109/JTEHM.2023.3324249","url":null,"abstract":"The study of emotions through the analysis of the induced physiological responses gained increasing interest in the past decades. Emotion-related studies usually employ films or video clips, but these stimuli do not give the possibility to properly separate and assess the emotional content provided by sight or hearing in terms of physiological responses. In this study we have devised an experimental protocol to elicit emotions by using, separately and jointly, pictures and sounds from the widely used International Affective Pictures System and International Affective Digital Sounds databases. We processed galvanic skin response, electrocardiogram, blood volume pulse, pupillary signal and electroencephalogram from 21 subjects to extract both autonomic and central nervous system indices to assess physiological responses in relation to three types of stimulation: auditory, visual, and auditory/visual. Results show a higher galvanic skin response to sounds compared to images. Electrocardiogram and blood volume pulse show different trends between auditory and visual stimuli. The electroencephalographic signal reveals a greater attention paid by the subjects when listening to sounds compared to watching images. In conclusion, these results suggest that emotional responses increase during auditory stimulation at both central and peripheral levels, demonstrating the importance of sounds for emotion recognition experiments and also opening the possibility toward the extension of auditory stimuli in other fields of psychophysiology. Clinical and Translational Impact Statement- These findings corroborate auditory stimuli’s importance in eliciting emotions, supporting their use in studying affective responses, e.g., mood disorder diagnosis, human-machine interaction, and emotional perception in pathology.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"171-181"},"PeriodicalIF":3.4,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10283859","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136303851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafhael M. Andrade;Stefano Sapienza;Abolfazl Mohebbi;Eric E. Fabara;Paolo Bonato
{"title":"Overground Walking With a Transparent Exoskeleton Shows Changes in Spatiotemporal Gait Parameters","authors":"Rafhael M. Andrade;Stefano Sapienza;Abolfazl Mohebbi;Eric E. Fabara;Paolo Bonato","doi":"10.1109/JTEHM.2023.3323381","DOIUrl":"10.1109/JTEHM.2023.3323381","url":null,"abstract":"Lower-limb gait training (GT) exoskeletons have been successfully used in rehabilitation programs to overcome the burden of locomotor impairment. However, providing suitable net interaction torques to assist patient movements is still a challenge. Previous transparent operation approaches have been tested in treadmill-based GT exoskeletons to improve user-robot interaction. However, it is not yet clear how a transparent lower-limb GT system affects user’s gait kinematics during overground walking, which unlike treadmill-based systems, requires active participation of the subjects to maintain stability. In this study, we implemented a transparent operation strategy on the ExoRoboWalker, an overground GT exoskeleton, to investigate its effect on the user’s gait. The approach employs a feedback zero-torque controller with feedforward compensation for the exoskeleton’s dynamics and actuators’ impedance. We analyzed the data of five healthy subjects walking overground with the exoskeleton in transparent mode (ExoTransp) and non-transparent mode (ExoOff) and walking without exoskeleton (NoExo). The transparent controller reduced the user-robot interaction torque and improved the user’s gait kinematics relative to ExoOff. No significant difference in stride length is observed between ExoTransp and NoExo (p = 0.129). However, the subjects showed a significant difference in cadence between ExoTransp (50.9± 1.1 steps/min) and NoExo (93.7 ± 8.7 steps/min) (p = 0.015), but not between ExoTransp and ExoOff (p = 0.644). Results suggest that subjects wearing the exoskeleton adjust their gait as in an attention-demanding task changing the spatiotemporal gait characteristics likely to improve gait balance.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"182-193"},"PeriodicalIF":3.4,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10275098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136207717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Letter to the Editor on “Leveraging Biomedical Engineering Engineers to Improve Obstructive Sleep Apnea (OSA) Care for Our Stroke Patients”","authors":"Sara E. Benjamin;Charlene E. Gamaldo","doi":"10.1109/JTEHM.2023.3318930","DOIUrl":"10.1109/JTEHM.2023.3318930","url":null,"abstract":"Obstructive sleep apnea (OSA), a condition of recurring, episodic complete or upper airway collapse, is a common disorder, affecting an estimated 17.4% of women and 33.9% of men in the United States \u0000<xref>[1]</xref>\u0000. The first line treatment for OSA is Continuous Positive Airway Pressure (CPAP) therapy, a medical device that delivers adequate airflow and oxygenation during sleep by way of a tube that connects an air compressor to a face mask that can fit over the nose, under the nose, or over the nose and mouth.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"536-537"},"PeriodicalIF":3.4,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Robust Gaze Estimation Approach via Exploring Relevant Electrooculogram Features and Optimal Electrodes Placements","authors":"Zheng Zeng;Linkai Tao;Hangyu Zhu;Yunfeng Zhu;Long Meng;Jiahao Fan;Chen Chen;Wei Chen","doi":"10.1109/JTEHM.2023.3320713","DOIUrl":"10.1109/JTEHM.2023.3320713","url":null,"abstract":"Gaze estimation, as a technique that reflects individual attention, can be used for disability assistance and assisting physicians in diagnosing diseases such as autism spectrum disorder (ASD), Parkinson’s disease, and attention deficit hyperactivity disorder (ADHD). Various techniques have been proposed for gaze estimation and achieved high resolution. Among these approaches, electrooculography (EOG)-based gaze estimation, as an economical and effective method, offers a promising solution for practical applications. Objective: In this paper, we systematically investigated the possible EOG electrode locations which are spatially distributed around the orbital cavity. Afterward, quantities of informative features to characterize physiological information of eye movement from the temporal-spectral domain are extracted from the seven differential channels. Methods and procedures: To select the optimum channels and relevant features, and eliminate irrelevant information, a heuristical search algorithm (i.e., forward stepwise strategy) is applied. Subsequently, a comparative analysis of the impacts of electrode placement and feature contributions on gaze estimation is evaluated via 6 classic models with 18 subjects. Results: Experimental results showed that the promising performance was achieved both in the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) within a wide gaze that ranges from −50° to +50°. The MAE and RMSE can be improved to 2.80° and 3.74° ultimately, while only using 10 features extracted from 2 channels. Compared with the prevailing EOG-based techniques, the performance improvement of MAE and RMSE range from 0.70° to 5.48° and 0.66° to 5.42°, respectively. Conclusion: We proposed a robust EOG-based gaze estimation approach by systematically investigating the optimal channel/feature combination. The experimental results indicated not only the superiority of the proposed approach but also its potential for clinical application. Clinical and translational impact statement: Accurate gaze estimation is a key step for assisting disabilities and accurate diagnosis of various diseases including ASD, Parkinson’s disease, and ADHD. The proposed approach can accurately estimate the points of gaze via EOG signals, and thus has the potential for various related medical applications.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"56-65"},"PeriodicalIF":3.4,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135843030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Luo;Minglei Bai;Shuhan Chen;Kai Gao;Lairong Yin;Ronghua Du
{"title":"Enhancing Force Control of Prosthetic Controller for Hand Prosthesis by Mimicking Biological Properties","authors":"Qi Luo;Minglei Bai;Shuhan Chen;Kai Gao;Lairong Yin;Ronghua Du","doi":"10.1109/JTEHM.2023.3320715","DOIUrl":"10.1109/JTEHM.2023.3320715","url":null,"abstract":"Prosthetic hands are frequently rejected due to frustrations in daily uses. By adopting principles of human neuromuscular control, it could potentially achieve human-like compliance in hand functions, thereby improving functionality in prosthetic hand. Previous studies have confirmed the feasibility of real-time emulation of neuromuscular reflex for prosthetic control. This study further to explore the effect of feedforward electromyograph (EMG) decoding and proprioception on the biomimetic controller. The biomimetic controller included a feedforward Bayesian model for decoding alpha motor commands from stump EMG, a muscle model, and a closed-loop component with a model of muscle spindle modified with spiking afferents. Real-time control was enabled by neuromorphic hardware to accelerate evaluation of biologically inspired models. This allows us to investigate which aspects in the controller could benefit from biological properties for improvements on force control performance. 3 non-disabled and 3 amputee subjects were recruited to conduct a “press-without-break” task, subjects were required to press a transducer till the pressure stabilized in an expected range without breaking the virtual object. We tested whether introducing more complex but biomimetic models could enhance the task performance. Data showed that when replacing proportional feedback with the neuromorphic spindle, success rates of amputees increased by 12.2% and failures due to breakage decreased by 26.3%. More prominently, success rates increased by 55.5% and failures decreased by 79.3% when replacing a linear model of EMG with the Bayesian model in the feedforward EMG processing. Results suggest that mimicking biological properties in feedback and feedforward control may improve the manipulation of objects by amputees using prosthetic hands. Clinical and Translational Impact Statement: This control approach may eventually assist amputees to perform fine force control when using prosthetic hands, thereby improving the motor performance of amputees. It highlights the promising potential of the biomimetic controller integrating biological properties implemented on neuromorphic models as a viable approach for clinical application in prosthetic hands.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"66-75"},"PeriodicalIF":3.4,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Li;Cheng Fang;Zhihao Zhu;Chuyi Chen;Aiguo Song
{"title":"Fractal Spiking Neural Network Scheme for EEG-Based Emotion Recognition","authors":"Wei Li;Cheng Fang;Zhihao Zhu;Chuyi Chen;Aiguo Song","doi":"10.1109/JTEHM.2023.3320132","DOIUrl":"10.1109/JTEHM.2023.3320132","url":null,"abstract":"Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spectral, or spatial information from EEG for classification. However, most studies fail to take full advantage of the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme approximately simulates the biological neural connection structures based on spiking neurons and a new fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based emotion recognition.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"106-118"},"PeriodicalIF":3.4,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10266337","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135838992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Low-Cost Instrumented Shoe System for Gait Phase Detection Based on Foot Plantar Pressure Data","authors":"Xinyao Hu;Qingsong Duan;Junpeng Tang;Gengshu Chen;Zhong Zhao;Zhenglong Sun;Chao Chen;Xingda Qu","doi":"10.1109/JTEHM.2023.3319576","DOIUrl":"10.1109/JTEHM.2023.3319576","url":null,"abstract":"This paper presents a novel low-cost and fully-portable instrumented shoe system for gait phase detection. The instrumented shoe consists of 174 independent sensing units constructed based on an off-the-shelf force-sensitive film known as the Velostat conductive copolymer. A zero potential method was implemented to address the crosstalk effect among the matrix-formed sensing arrays. A customized algorithm for gait event and phase detection was developed to estimate stance sub-phases including initial contact, flat foot, and push off. Experiments were carried out to evaluate the performance of the proposed instrumented shoe system in gait phase detection for both straight-line walking and turning walking. The results showed that the mean absolute time differences between the estimated phases by the proposed instrumented shoe system and the reference measurement ranged from 45 to 58 ms during straight-line walking and from 51 to 77 ms during turning walking, which were comparable to the state of art.Clinical and Translational Impact Statement—By allowing convenient gait monitoring in home healthcare settings, the proposed system enables extensive ADL data collection and facilitates developing effective treatment and rehabilitation strategies for patients with movement disorders.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"84-96"},"PeriodicalIF":3.4,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10264157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135755244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}