NeuroDiag:利用手写自动诊断帕金森病的软件

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Quoc Cuong Ngo;Nicole McConnell;Mohammod Abdul Motin;Barbara Polus;Arup Bhattacharya;Sanjay Raghav;Dinesh Kant Kumar
{"title":"NeuroDiag:利用手写自动诊断帕金森病的软件","authors":"Quoc Cuong Ngo;Nicole McConnell;Mohammod Abdul Motin;Barbara Polus;Arup Bhattacharya;Sanjay Raghav;Dinesh Kant Kumar","doi":"10.1109/JTEHM.2024.3355432","DOIUrl":null,"url":null,"abstract":"Objective: A change in handwriting is an early sign of Parkinson’s disease (PD). However, significant inter-person differences in handwriting make it difficult to identify pathological handwriting, especially in the early stages. This paper reports the testing of NeuroDiag, a software-based medical device, for the automated detection of PD using handwriting patterns. NeuroDiag is designed to direct the user to perform six drawing and writing tasks, and the recordings are then uploaded onto a server for analysis. Kinematic information and pen pressure of handwriting are extracted and used as baseline parameters. NeuroDiag was trained based on 26 PD patients in the early stage of the disease and 26 matching controls. Methods: Twenty-three people with PD (PPD) in their early stage of the disease, 25 age-matched healthy controls (AMC), and 7 young healthy controls were recruited for this study. Under the supervision of a consultant neurologist or their nurse, the participants used NeuroDiag. The reports were generated in real-time and tabulated by an independent observer. Results: The participants were able to use NeuroDiag without assistance. The handwriting data was successfully uploaded to the server where the report was automatically generated in real-time. There were significant differences in the writing speed between PPD and AMC (P<0.001). NeuroDiag showed 86.96% sensitivity and 76.92% specificity in differentiating PPD from those without PD. Conclusion: In this work, we tested the reliability of NeuroDiag in differentiating between PPD and AMC for real-time applications. The results show that NeuroDiag has the potential to be used to assist neurologists and for telehealth applications. Clinical and Translational Impact Statement — This pre-clinical study shows the feasibility of developing a community-wide screening program for Parkinson’s disease using automated handwriting analysis software, NeuroDiag.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"291-297"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10403837","citationCount":"0","resultStr":"{\"title\":\"NeuroDiag: Software for Automated Diagnosis of Parkinson’s Disease Using Handwriting\",\"authors\":\"Quoc Cuong Ngo;Nicole McConnell;Mohammod Abdul Motin;Barbara Polus;Arup Bhattacharya;Sanjay Raghav;Dinesh Kant Kumar\",\"doi\":\"10.1109/JTEHM.2024.3355432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: A change in handwriting is an early sign of Parkinson’s disease (PD). However, significant inter-person differences in handwriting make it difficult to identify pathological handwriting, especially in the early stages. This paper reports the testing of NeuroDiag, a software-based medical device, for the automated detection of PD using handwriting patterns. NeuroDiag is designed to direct the user to perform six drawing and writing tasks, and the recordings are then uploaded onto a server for analysis. Kinematic information and pen pressure of handwriting are extracted and used as baseline parameters. NeuroDiag was trained based on 26 PD patients in the early stage of the disease and 26 matching controls. Methods: Twenty-three people with PD (PPD) in their early stage of the disease, 25 age-matched healthy controls (AMC), and 7 young healthy controls were recruited for this study. Under the supervision of a consultant neurologist or their nurse, the participants used NeuroDiag. The reports were generated in real-time and tabulated by an independent observer. Results: The participants were able to use NeuroDiag without assistance. The handwriting data was successfully uploaded to the server where the report was automatically generated in real-time. There were significant differences in the writing speed between PPD and AMC (P<0.001). NeuroDiag showed 86.96% sensitivity and 76.92% specificity in differentiating PPD from those without PD. Conclusion: In this work, we tested the reliability of NeuroDiag in differentiating between PPD and AMC for real-time applications. The results show that NeuroDiag has the potential to be used to assist neurologists and for telehealth applications. Clinical and Translational Impact Statement — This pre-clinical study shows the feasibility of developing a community-wide screening program for Parkinson’s disease using automated handwriting analysis software, NeuroDiag.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"12 \",\"pages\":\"291-297\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10403837\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10403837/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10403837/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:笔迹改变是帕金森病(PD)的早期征兆。然而,由于人与人之间的笔迹差异很大,因此很难识别病态笔迹,尤其是在早期阶段。本文报告了对基于软件的医疗设备 NeuroDiag 的测试,该设备可利用笔迹模式自动检测帕金森病。NeuroDiag 设计用于指导用户执行六项绘画和书写任务,然后将记录上传到服务器进行分析。提取笔迹的运动学信息和笔压作为基线参数。NeuroDiag 基于 26 名早期帕金森病患者和 26 名匹配对照组进行训练。训练方法本研究招募了 23 名早期帕金森病(PPD)患者、25 名年龄匹配的健康对照者(AMC)和 7 名年轻健康对照者。在神经科顾问或其护士的监督下,参与者使用 NeuroDiag。报告由一名独立观察员实时生成并制表。结果参与者无需协助即可使用 NeuroDiag。手写数据被成功上传到服务器,并在服务器上实时自动生成报告。PPD和AMC的书写速度存在明显差异(P<0.001)。NeuroDiag 在区分 PPD 和无 PD 患者方面显示出 86.96% 的灵敏度和 76.92% 的特异性。结论在这项工作中,我们测试了 NeuroDiag 在实时应用中区分 PPD 和 AMC 的可靠性。结果表明,NeuroDiag 有潜力用于协助神经科医生和远程医疗应用。临床和转化影响声明--这项临床前研究表明,利用自动笔迹分析软件 NeuroDiag 开发全社区帕金森病筛查计划是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NeuroDiag: Software for Automated Diagnosis of Parkinson’s Disease Using Handwriting
Objective: A change in handwriting is an early sign of Parkinson’s disease (PD). However, significant inter-person differences in handwriting make it difficult to identify pathological handwriting, especially in the early stages. This paper reports the testing of NeuroDiag, a software-based medical device, for the automated detection of PD using handwriting patterns. NeuroDiag is designed to direct the user to perform six drawing and writing tasks, and the recordings are then uploaded onto a server for analysis. Kinematic information and pen pressure of handwriting are extracted and used as baseline parameters. NeuroDiag was trained based on 26 PD patients in the early stage of the disease and 26 matching controls. Methods: Twenty-three people with PD (PPD) in their early stage of the disease, 25 age-matched healthy controls (AMC), and 7 young healthy controls were recruited for this study. Under the supervision of a consultant neurologist or their nurse, the participants used NeuroDiag. The reports were generated in real-time and tabulated by an independent observer. Results: The participants were able to use NeuroDiag without assistance. The handwriting data was successfully uploaded to the server where the report was automatically generated in real-time. There were significant differences in the writing speed between PPD and AMC (P<0.001). NeuroDiag showed 86.96% sensitivity and 76.92% specificity in differentiating PPD from those without PD. Conclusion: In this work, we tested the reliability of NeuroDiag in differentiating between PPD and AMC for real-time applications. The results show that NeuroDiag has the potential to be used to assist neurologists and for telehealth applications. Clinical and Translational Impact Statement — This pre-clinical study shows the feasibility of developing a community-wide screening program for Parkinson’s disease using automated handwriting analysis software, NeuroDiag.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信