Dong Miao;Ying Zhao;Xue Ren;Meng Dou;Yu Yao;Yiran Xu;Yingchao Cui;Ailian Liu
{"title":"A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation","authors":"Dong Miao;Ying Zhao;Xue Ren;Meng Dou;Yu Yao;Yiran Xu;Yingchao Cui;Ailian Liu","doi":"10.1109/JTEHM.2024.3491612","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3491612","url":null,"abstract":"To achieve precise Couinaud liver segmentation in preoperative planning for hepatic surgery, accommodating the complex anatomy and significant variations, optimizing surgical approaches, reducing postoperative complications, and preserving liver function.This research presents a novel approach to automating liver segmentation by identifying seven key anatomical landmarks using portal venous phase images from contrast-enhanced magnetic resonance imaging (CE-MRI). By employing a multi-task learning framework, we synchronized the detection of these landmarks with the segmentation process, resulting in accurate and robust delineation of the Couinaud segments.To comprehensively validate our model, we included multiple patient types in our test set—those with normal livers, diffuse liver diseases, and localized liver lesions—under varied imaging conditions, including two field strengths, two devices, and two contrast agents. Our model achieved an average Dice Similarity Coefficient (DSC) of 85.29%, surpassing the next best-performing models by 3.12%.Our research presents a pioneering automated approach for segmenting Couinaud segments using CE-MRI. By correlating landmark detection with segmentation, we enhance surgical planning precision. This method promises improved clinical outcomes by accurately adapting to anatomical variability and reducing potential postoperative complications.Clinical impact: The application of this technique in clinical settings is poised to enhance the precision of liver surgical planning. This could lead to more tailored surgical interventions, minimization of operative risks, and preservation of healthy liver tissue, culminating in improved patient outcomes and potentially lowering the incidence of postoperative complications.Clinical and Translational Impact Statement: This research offers a novel automated liver segmentation technique, enhancing preoperative planning and potentially reducing complications, which may translate into better postoperative outcomes in hepatic surgery.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"697-710"},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soodeh Ahani;Nikoo Niknafs;Pascal M. Lavoie;Liisa Holsti;Guy A. Dumont
{"title":"Video-Based Respiratory Rate Estimation for Infants in the NICU","authors":"Soodeh Ahani;Nikoo Niknafs;Pascal M. Lavoie;Liisa Holsti;Guy A. Dumont","doi":"10.1109/JTEHM.2024.3488523","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3488523","url":null,"abstract":"Objective: Non-contact respiratory rate estimation (RR) is highly desirable for infants because of their sensitive skin. We propose a novel RGB video-based RR estimation method for infants in the neonatal intensive care unit (NICU) that can accurately measure the RR contact-less.Methods and Procedures: We utilize Eulerian video magnification (EVM) method and develop an adaptive peak prominence threshold value estimation method to address challenges of RR estimation (e.g., dark environments, shallow breathing, babies swaddled or under blankets). We recruited 13 infants recorded for 4 consecutive hours per case. We then evaluate the performance of the algorithm for several (i.e., 19 to 25) randomly selected videos, each lasting 1 minute, for each case.Results: Intraclass correlation coefficients of the proposed method over manually and automatically selected ROIs are 0.91 (95%CI: \u0000<inline-formula> <tex-math>$0.89-0.93$ </tex-math></inline-formula>\u0000) and 0.88 (95%CI: \u0000<inline-formula> <tex-math>$0.85-0.9$ </tex-math></inline-formula>\u0000), indicating excellent and good reliability, respectively. The Bland-Altman analysis of the proposed algorithm shows higher agreement between the estimated values via the proposed method and visually counted RR than the agreement between the RR obtained from the impedance sensors and reference RR, and agreement between a former EVM-based method and reference RR values.Conclusion: Our algorithm shows promising results for RR estimation in a real-life NICU environment under various conditions that can confound the estimation.Clinical impact: We present a robust algorithm for non-contact neonatal respiratory rate monitoring, capable of performing well under various environmental lighting conditions in NICU, even when the infant is clothed or covered.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"684-696"},"PeriodicalIF":3.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738847","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiuyang Lin;Haocun Wang;Dwaipayan Biswas;Zheyi Li;Erika Lutin;Chris van Hoof;Mingyi Chen;Nick van Helleputte
{"title":"A Novel Chest-Based PPG Measurement System","authors":"Qiuyang Lin;Haocun Wang;Dwaipayan Biswas;Zheyi Li;Erika Lutin;Chris van Hoof;Mingyi Chen;Nick van Helleputte","doi":"10.1109/JTEHM.2024.3471468","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3471468","url":null,"abstract":"Advancements in integrated circuit (IC) technology have accelerated the miniaturization of body-worn sensors and systems, enabling long-term health monitoring. Wearable electrocardiogram (ECG), finger photoplethysmogram (PPG), and wrist-worn PPG have shown great success and significantly improved life quality. Chest-based PPG has the potential to extract multiple vital signs but requires ultra-high dynamic range (DR) IC to read out the small PPG signal among large respiration and artifacts inherent in daily life. This paper presents a dedicated high DR system for wearable chest PPG applications with a small form factor. The whole measurement system is integrated on a 20 cm2 PCB board. We have formulated a comprehensive evaluation protocol to validate the system with on-body chest PPG measurement in the workspace environment. First, chest PPG data was obtained from 6 adults and compared to data from a standard ECG patch. This system showed an average absolute deviation (AD) of 0.41 beats per minute, achieving > 99.53% heart rate (HR) accuracy. Second, chest PPG was recorded and compared to conventional PPG finger clip and PPG wristband, also showing > 98.6% HR matching and an absolute deviation in the standard deviation of NN intervals (SDNN) of < 12.8 ms for HRV monitoring within the protocol. Moreover, it successfully derives other vital parameters such as respiration rate and blood oxygen level (SpO2), showing the advancement among all these three reference modalities. This system can pave the way for new application areas, such as chest patches, to monitor chronic heart and respiratory diseases.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"675-683"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating Multimodal Neuroimaging and Genetics: A Structurally-Linked Sparse Canonical Correlation Analysis Approach","authors":"Jiwon Chung;Sunghun Kim;Ji Hye Won;Hyunjin Park","doi":"10.1109/JTEHM.2024.3463720","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3463720","url":null,"abstract":"Neuroimaging genetics represents a multivariate approach aimed at elucidating the intricate relationships between high-dimensional genetic variations and neuroimaging data. Predominantly, existing methodologies revolve around Sparse Canonical Correlation Analysis (SCCA), a framework we expand to 1) encompass multiple imaging modalities and 2) promote the simultaneous identification of structurally linked features across imaging modalities. The structurally linked brain regions were assessed using diffusion tensor imaging, which quantifies the presence of neuronal fibers, thereby grounding our approach in biologically well-founded prior knowledge within the SCCA model. In our proposed structurally linked SCCA framework, we leverage T1-weighted MRI and functional MRI (fMRI) time series data to delineate both the structural and functional characteristics of the brain. Genetic variations, specifically single nucleotide polymorphisms (SNPs), are also incorporated as a genetic modality. Validation of our methodology was conducted using a simulated dataset and large-scale normative data from the Human Connectome Project (HCP). Our approach demonstrated superior performance compared to existing methods on simulated data and revealed interpretable gene-imaging associations in the real dataset. Thus, our methodology lays the groundwork for elucidating the genetic underpinnings of brain structure and function, thereby providing novel insights into the field of neuroscience. Our code is available at \u0000<uri>https://github.com/mungegg</uri>\u0000.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"659-667"},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Pre-Voiding Alarm System Using Wearable Ultrasound and Machine Learning Algorithms for Children With Nocturnal Enuresis","authors":"Jun Wang;Zeyang Dai;Xiao Liu","doi":"10.1109/JTEHM.2024.3457593","DOIUrl":"10.1109/JTEHM.2024.3457593","url":null,"abstract":"Nocturnal enuresis is a bothersome condition that affects many children and their caregivers. Post-voiding systems is of little value in training a child into a correct voiding routing while existing pre-voiding systems suffer from several practical limitations, such as cumbersome hardware, assuming individual bladder shapes being universal, and being sensitive to sensor placement error. Methods: A low-voltage ultrasound system with machine learning has been developed in estimating bladder filling status. A custom-made flexible 1D transducer array has been excited by low-voltage coded pulses with a pulse compression technique for an enhanced signal-to-noise ratio. In order to minimize the negative influence of possible transducer misplacement, a multiple-position training strategy using machine learning has been adopted in this work. Three popular classification methods, KNN, SVM and sparse coding, have been utilized to classify the acquired different volumes ranging from 100 ml to 300 ml into two categories: low volume and high volume. The low-volume category requires no further action while the high-volume category triggers an alarm to alert the child and caregiver. Results: When the sensor placement is ideal, i.e., the position of the practical sensor placement is on spot with the trained position, the precision and recall of the classification using sparse coding are \u0000<inline-formula> <tex-math>$0.957~pm ~0.02$ </tex-math></inline-formula>\u0000 and \u0000<inline-formula> <tex-math>$0.958~pm ~0.02$ </tex-math></inline-formula>\u0000, respectively. Even if the transducer array is misplaced by up to 4.5 mm away from the ideal location, the proposed system is able to maintain high classification accuracy (precision \u0000<inline-formula> <tex-math>$ge 0.75$ </tex-math></inline-formula>\u0000 and recall \u0000<inline-formula> <tex-math>$ge 0.75$ </tex-math></inline-formula>\u0000). Category: Early/Pre-Clinical Research Clinical and Translational Impact: The proposed ultrasound sensor system for nocturnal enuresis is of significant clinical and translational value as it addresses two major issues that limit the wide adoption of similar devices. Firstly, it offers enhanced safety as the entire system has been implemented in the lowvoltage domain. Secondly, the system features ample tolerance to sensor misplacement while maintaining high classification accuracy. These features combined provide a much more user-friendly environment for children and their caregivers than existing devices.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"643-658"},"PeriodicalIF":3.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10671589","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George Oliveira Barros;José Nathan Andrade Muller da Silva;Henrique Machado de Sousa Proença;Stanley Almeida Araújo;David Campos Wanderley;Luciano Rebouças de Oliveira;Washington Luis Conrado Dos-Santos;Angelo Amancio Duarte;Flavio de Barros Vidal
{"title":"Enhancing Podocyte Degenerative Changes Identification With Pathologist Collaboration: Implications for Improved Diagnosis in Kidney Diseases","authors":"George Oliveira Barros;José Nathan Andrade Muller da Silva;Henrique Machado de Sousa Proença;Stanley Almeida Araújo;David Campos Wanderley;Luciano Rebouças de Oliveira;Washington Luis Conrado Dos-Santos;Angelo Amancio Duarte;Flavio de Barros Vidal","doi":"10.1109/JTEHM.2024.3455941","DOIUrl":"10.1109/JTEHM.2024.3455941","url":null,"abstract":"Podocyte degenerative changes are common in various kidney diseases, and their accurate identification is crucial for pathologists to diagnose and treat such conditions. However, this can be a difficult task, and previous attempts to automate the identification of podocytes have not been entirely successful. To address this issue, this study proposes a novel approach that combines pathologists’ expertise with an automated classifier to enhance the identification of podocytopathies. The study involved building a new dataset of renal glomeruli images, some with and others without podocyte degenerative changes, and developing a convolutional neural network (CNN) based classifier. The results showed that our automated classifier achieved an impressive 90.9% f-score. When the pathologists used as an auxiliary tool to classify a second set of images, the medical group’s average performance increased significantly, from \u0000<inline-formula> <tex-math>$91.4pm 12.5$ </tex-math></inline-formula>\u0000% to \u0000<inline-formula> <tex-math>$96.1pm 2.9$ </tex-math></inline-formula>\u0000% of f-score. Fleiss’ kappa agreement among the pathologists also increased from 0.59 to 0.83. Conclusion: These findings suggest that automating this task can bring benefits for pathologists to correctly identify images of glomeruli with podocyte degeneration, leading to improved individual accuracy while raising agreement in diagnosing podocytopathies. This approach could have significant implications for the diagnosis and treatment of kidney diseases. Clinical impact: The approach presented in this study has the potential to enhance the accuracy of medical diagnoses for detecting podocyte abnormalities in glomeruli, which serve as biomarkers for various glomerular diseases.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"635-642"},"PeriodicalIF":3.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10675352","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhichuan Tang;Zhixuan Cui;Hang Wang;Pengcheng Liu;Xuan Xu;Keshuai Yang
{"title":"A 4-DOF Exosuit Using a Hybrid EEG-Based Control Approach for Upper-Limb Rehabilitation","authors":"Zhichuan Tang;Zhixuan Cui;Hang Wang;Pengcheng Liu;Xuan Xu;Keshuai Yang","doi":"10.1109/JTEHM.2024.3454077","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3454077","url":null,"abstract":"Rehabilitation devices, such as traditional rigid exoskeletons or exosuits, have been widely used to rehabilitate upper limb function post-stroke. In this paper, we have developed an exosuit with four degrees of freedom to enable users to involve more joints in the rehabilitation process. Additionally, a hybrid electroencephalogram-based (EEG-based) control approach has been developed to promote active user engagement and provide more control commands.The hybrid EEG-based control approach includes steady-state visual evoked potential (SSVEP) paradigm and motor imagery (MI) paradigm. Firstly, the rehabilitation movement was selected by SSVEP paradigm, and the multivariate variational mode decomposition (MVMD) and canonical correlation analysis (CCA) method was used for SSVEP EEG recognition; then, the motion intention was obtained by MI paradigm, and the convolutional neural network (CNN) and long short-term memory network (LSTM) were used to build a CNN-LSTM model for MI EEG recognition; finally, the recognition results were translated into control commands of Bowden cables to achieve multi-degree-of-freedom rehabilitation.Experimental results show that the average classification accuracy of the CNN-LSTM model reaches to 90.07% ± 2.23%, and the overall accuracy of the hybrid EEG-based control approach reaches to 85.26% ± 1.95%. The twelve subjects involved in the usability assessment demonstrated an average system usability scale (SUS) score of 81.25 ± 5.82. Additionally, four participants who underwent a 35-day rehabilitation training demonstrated an average 10.33% increase in range of motion (ROM) across 4 joints, along with a 11.35% increase in the average electromyography (EMG) amplitude of the primary muscle involved.The exosuit demonstrates good accuracy in control, exhibits favorable usability, and shows certain efficacy in multi-joint rehabilitation. Our study has taken into account the neuroplastic principles, aiming to achieve active user engagement while introducing additional degrees of freedom, offering novel ideas and methods for potential brain-computer interface (BCI)-based rehabilitation strategies and hardware development.Clinical impact: Our study presents an exosuit with four degrees of freedom for stroke rehabilitation, enabling multi-joint movement and improved motor recovery. The hybrid EEG-based control approach enhances active user engagement, offering a promising strategy for more effective and user-driven rehabilitation, potentially improving clinical outcomes.Clinical and Translational Impact Statement: By developing an exosuit and a hybrid EEG-based control approach, this study enhances stroke rehabilitation through better user engagement and multi-joint capabilities. These innovations consider neuroplasticity principles, integrating rehabilitation theory with rehabilitation device.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"622-634"},"PeriodicalIF":3.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663725","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous EEG-fNIRS Data Classification Through Selective Channel Representation and Spectrogram Imaging","authors":"Chayut Bunterngchit;Jiaxing Wang;Zeng-Guang Hou","doi":"10.1109/JTEHM.2024.3448457","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3448457","url":null,"abstract":"The integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) can facilitate the advancement of brain-computer interfaces (BCIs). However, existing research in this domain has grappled with the challenge of the efficient selection of features, resulting in the underutilization of the temporal richness of EEG and the spatial specificity of fNIRS data.To effectively address this challenge, this study proposed a deep learning architecture called the multimodal DenseNet fusion (MDNF) model that was trained on two-dimensional (2D) EEG data images, leveraging advanced feature extraction techniques. The model transformed EEG data into 2D images using a short-time Fourier transform, applied transfer learning to extract discriminative features, and consequently integrated them with fNIRS-derived spectral entropy features. This approach aimed to bridge existing gaps in EEG-fNIRS-based BCI research by enhancing classification accuracy and versatility across various cognitive and motor imagery tasks.Experimental results on two public datasets demonstrated the superiority of our model over existing state-of-the-art methods.Thus, the high accuracy and precise feature utilization of the MDNF model demonstrates the potential in clinical applications for neurodiagnostics and rehabilitation, thereby paving the method for patient-specific therapeutic strategies.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"600-612"},"PeriodicalIF":3.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643872","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep Learning and fMRI-Based Pipeline for Optimization of Deep Brain Stimulation During Parkinson’s Disease Treatment: Toward Rapid Semi-Automated Stimulation Optimization","authors":"Jianwei Qiu;Afis Ajala;John Karigiannis;Jürgen Germann;Brendan Santyr;Aaron Loh;Luca Marinelli;Thomas Foo;Radhika Madhavan;Desmond Yeo;Alexandre Boutet;Andres Lozano","doi":"10.1109/JTEHM.2024.3448392","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3448392","url":null,"abstract":"Objective: Optimized deep brain stimulation (DBS) is fast becoming a therapy of choice for the treatment of Parkinson’s disease (PD). However, the post-operative optimization (aimed at maximizing patient clinical benefits and minimizing adverse effects) of all possible DBS parameter settings using the standard-of-care clinical protocol requires numerous clinical visits, which substantially increases the time to optimization per patient (TPP), patient cost burden and limit the number of patients who can undergo DBS treatment. The TPP is further elongated in electrodes with stimulation directionality or in diseases with latency in clinical feedback. In this work, we proposed a deep learning and fMRI-based pipeline for DBS optimization that can potentially reduce the TPP from ~1 year to a few hours during a single clinical visit.Methods and procedures: We developed an unsupervised autoencoder (AE)-based model to extract meaningful features from 122 previously acquired blood oxygenated level dependent (BOLD) fMRI datasets from 39 a priori clinically optimized PD patients undergoing DBS therapy. The extracted features are then fed into multilayer perceptron (MLP)-based parameter classification and prediction models for rapid DBS parameter optimization.Results: The AE-extracted features of optimal and non-optimal DBS were disentangled. The AE-MLP classification model yielded accuracy, precision, recall, F1 score, and combined AUC of 0.96 ± 0.04, 0.95 ± 0.07, 0.92 ± 0.07, 0.93 ± 0.06, and 0.98 respectively. Accuracies of 0.79 ± 0.04, 0.85 ± 0.04, 0.82 ± 0.05, 0.83 ± 0.05, and 0.70 ± 0.07 were obtained in the prediction of voltage, frequency, and x-y-z contact locations, respectively.Conclusion: The proposed AE-MLP models yielded promising results for fMRI-based DBS parameter classification and prediction, potentially facilitating rapid semi-automated DBS parameter optimization. Clinical and Translational Impact Statement—A deep learning-based pipeline for semi-automated DBS parameter optimization is presented, with the potential to significantly decrease the optimization duration per patient and patients' financial burden while increasing patient throughput.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"589-599"},"PeriodicalIF":3.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643605","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafael Morales Mayoral;Ameer Helmi;Samuel W. Logan;Naomi T. Fitter
{"title":"GoBot Go! Using a Custom Assistive Robot to Promote Physical Activity in Children","authors":"Rafael Morales Mayoral;Ameer Helmi;Samuel W. Logan;Naomi T. Fitter","doi":"10.1109/JTEHM.2024.3446511","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3446511","url":null,"abstract":"Children worldwide are becoming increasingly inactive, leading to significant wellness challenges. Initial findings from our research team indicate that robots could potentially provide a more effective approach (compared to other age-appropriate toys) for encouraging physical activity in children. However, the basis of this past work relied on either interactions with groups of children (making it challenging to isolate specific factors that influenced activity levels) or a preliminary version of results of the present study (which centered on just a single more exploratory method for assessing child movement). This paper delves into more controlled interactions involving a single robot and a child participant, while also considering observations over an extended period to mitigate the influence of novelty on the study outcomes. We discuss the outcomes of a two-month-long deployment, during which \u0000<inline-formula> <tex-math>$N=8$ </tex-math></inline-formula>\u0000 participants engaged with our custom robot, GoBot, in weekly sessions. During each session, the children experienced three different conditions: a teleoperated robot mode, a semi-autonomous robot mode, and a control condition in which the robot was present but inactive. Compared to our past related work, the results expanded our findings by confirming with greater clout (based on multiple data streams, including one more robust measure compared to the past related work) that children tended to be more physically active when the robot was active, and interestingly, there were no significant differences between the teleoperated and semi-autonomous modes in terms of our study measures. These insights can inform future applications of assistive robots in child motor interventions, including the guiding of appropriate levels of autonomy for these systems. This study demonstrates that incorporating robotic systems into play environments can boost physical activity in young children, indicating potential implementation in settings crafted to enhance children’s physical movement.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"613-621"},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}