Chukwuemeka Clinton Atabansi;Hui Li;Sheng Wang;Jing Nie;Haijun Liu;Bo Xu;Xichuan Zhou;Dewei Li
{"title":"ICT-Net: An Integrated Convolution and Transformer-Based Network for Complex Liver and Liver Tumor Region Segmentation","authors":"Chukwuemeka Clinton Atabansi;Hui Li;Sheng Wang;Jing Nie;Haijun Liu;Bo Xu;Xichuan Zhou;Dewei Li","doi":"10.1109/JTEHM.2025.3586470","DOIUrl":null,"url":null,"abstract":"Background: Automatic segmentation of liver regions as well as liver lesions such as hepatocellular carcinoma (HCC) from computed tomography (CT) images is critical for accurate diagnosis and therapy planning. With the advent of deep learning techniques such as transformers, computer-aided diagnostic tools (CADs) have the potential to increase the accuracy of liver tumor diagnosis, progression, and treatment planning. However, two major challenges remain: 1) existing models struggle to extract robust spatial features for accurate liver and liver lesion segmentation, and 2) publicly available liver datasets with HCC annotations are limited. Methods: We first present a new liver dataset acquired from Chongqing University Cancer Hospital (CCH-LHCC-CT) with HCC annotations. Second, we developed a novel deep learning architecture (ICT-Net), which is constructed based on a pretrained transformer encoder in conjunction with an advanced feature upscaling and enhanced convolution-transformer decoder formation. Results: We performed liver and liver tumor segmentation on the CCH-LHCC-CT and three public CT liver datasets. The proposed ICT-Net architecture achieves superior accuracy (higher ACC/DSC/IoU, lower HD95) across all datasets. Conclusions: We construct a novel deep-learning architecture that produces robust information for liver and liver tumor segmentation. The statistical and visual results demonstrate that the proposed ICT-Net outperforms other existing approaches investigated in this study in terms of ACC, DSC, and IoU. Clinical Translation Statement: ICT-Net enhances surgical planning accuracy through precise tumor margin delineation and improves therapy response assessment reliability, which holds meaningful promise to support more precise and effective clinical therapeutic strategies for patients with HCC.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"310-322"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11072178/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Automatic segmentation of liver regions as well as liver lesions such as hepatocellular carcinoma (HCC) from computed tomography (CT) images is critical for accurate diagnosis and therapy planning. With the advent of deep learning techniques such as transformers, computer-aided diagnostic tools (CADs) have the potential to increase the accuracy of liver tumor diagnosis, progression, and treatment planning. However, two major challenges remain: 1) existing models struggle to extract robust spatial features for accurate liver and liver lesion segmentation, and 2) publicly available liver datasets with HCC annotations are limited. Methods: We first present a new liver dataset acquired from Chongqing University Cancer Hospital (CCH-LHCC-CT) with HCC annotations. Second, we developed a novel deep learning architecture (ICT-Net), which is constructed based on a pretrained transformer encoder in conjunction with an advanced feature upscaling and enhanced convolution-transformer decoder formation. Results: We performed liver and liver tumor segmentation on the CCH-LHCC-CT and three public CT liver datasets. The proposed ICT-Net architecture achieves superior accuracy (higher ACC/DSC/IoU, lower HD95) across all datasets. Conclusions: We construct a novel deep-learning architecture that produces robust information for liver and liver tumor segmentation. The statistical and visual results demonstrate that the proposed ICT-Net outperforms other existing approaches investigated in this study in terms of ACC, DSC, and IoU. Clinical Translation Statement: ICT-Net enhances surgical planning accuracy through precise tumor margin delineation and improves therapy response assessment reliability, which holds meaningful promise to support more precise and effective clinical therapeutic strategies for patients with HCC.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.