Rumaisa Abu Hasan;Tong Boon Tang;Muhamad Saiful Bahri Yusoff;Syed Saad Azhar Ali
{"title":"Electroencephalography-Based Recognition of Low Mental Resilience Using Multi-Condition Decision-Level Fusion Approach","authors":"Rumaisa Abu Hasan;Tong Boon Tang;Muhamad Saiful Bahri Yusoff;Syed Saad Azhar Ali","doi":"10.1109/JTEHM.2025.3597088","DOIUrl":null,"url":null,"abstract":"Background: Mental resilience is an important indicator of our defence mechanism against mental illness. The assessment of mental resilience is conventionally done using psychological questionnaires but more recently, has been investigated using neuroimaging modalities such as the Magnetic Resonance Imaging and Positron Emission Tomography. While having high spatial resolution, these modalities might not be cost-effective and accessible to serve larger populations. This pilot trial investigates the performance of electroencephalography (EEG) based system to assess mental resilience under different mental conditions.Methods: A total of sixty-eight healthy adults took part in this trial. Three types of EEG features, namely spectra, functional connectivity (FC) and effective connectivity (EC) were extracted, and their correlation with a standard resilience assessment instrument – the Connor-Davidson Resilience Scale were evaluated at resting and task conditions using stepwise regression. The features with the best goodness of fit model were then used to classify individuals into a low and high mental resilience class.Results: The EC features using phase slope index achieved the highest adjusted <inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula> and the lowest root mean square error, compared to the spectral and FC features. The SVM classifiers trained with the EC features were able to recognize low mental resilience with accuracy at least 66% depending on the mental condition. Fusion of SVM scores from the eyes-closed, eyes-open and task conditions improved the classification accuracy to more than 85%.Conclusion: The pilot trial reveals the EC as the most promising EEG feature type in assessing mental resilience due to its measure of causality in brain activity, and demonstrates that the fusion of decisions among different mental conditions can help improve the recognition of low mental resilience. Findings from this trial contribute to maturing an EEG-based resilience assessment system development for workplace settings. Clinical Impact—Direct assessment using brain imaging modalities such as EEG provides a cost-effective means to assess mental resilience. To our knowledge, this is the first effort for healthy subjects. With the identified neuromarkers, the proposed solution demonstrates the potential to fuse EEG features from different mental conditions to provide accurate mental resilience assessment in workplace settings.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"387-401"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11121398","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11121398/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mental resilience is an important indicator of our defence mechanism against mental illness. The assessment of mental resilience is conventionally done using psychological questionnaires but more recently, has been investigated using neuroimaging modalities such as the Magnetic Resonance Imaging and Positron Emission Tomography. While having high spatial resolution, these modalities might not be cost-effective and accessible to serve larger populations. This pilot trial investigates the performance of electroencephalography (EEG) based system to assess mental resilience under different mental conditions.Methods: A total of sixty-eight healthy adults took part in this trial. Three types of EEG features, namely spectra, functional connectivity (FC) and effective connectivity (EC) were extracted, and their correlation with a standard resilience assessment instrument – the Connor-Davidson Resilience Scale were evaluated at resting and task conditions using stepwise regression. The features with the best goodness of fit model were then used to classify individuals into a low and high mental resilience class.Results: The EC features using phase slope index achieved the highest adjusted $R^{2}$ and the lowest root mean square error, compared to the spectral and FC features. The SVM classifiers trained with the EC features were able to recognize low mental resilience with accuracy at least 66% depending on the mental condition. Fusion of SVM scores from the eyes-closed, eyes-open and task conditions improved the classification accuracy to more than 85%.Conclusion: The pilot trial reveals the EC as the most promising EEG feature type in assessing mental resilience due to its measure of causality in brain activity, and demonstrates that the fusion of decisions among different mental conditions can help improve the recognition of low mental resilience. Findings from this trial contribute to maturing an EEG-based resilience assessment system development for workplace settings. Clinical Impact—Direct assessment using brain imaging modalities such as EEG provides a cost-effective means to assess mental resilience. To our knowledge, this is the first effort for healthy subjects. With the identified neuromarkers, the proposed solution demonstrates the potential to fuse EEG features from different mental conditions to provide accurate mental resilience assessment in workplace settings.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.