{"title":"Multimodal AI for Home Wound Patient Referral Decisions From Images With Specialist Annotations","authors":"Reza Saadati Fard;Emmanuel Agu;Palawat Busaranuvong;Deepak Kumar;Shefalika Gautam;Bengisu Tulu;Diane Strong","doi":"10.1109/JTEHM.2025.3588427","DOIUrl":null,"url":null,"abstract":"Chronic wounds affect 8.5 million Americans, especially the elderly and patients with diabetes. As regular care is critical for proper healing, many patients receive care in their homes from visiting nurses and caregivers with variable wound expertise. Problematic, non-healing wounds should be referred to experts in wound clinics to avoid adverse outcomes such as limb amputations. Unfortunately, due to the lack of wound expertise, referral decisions made in non-clinical settings can be erroneous, delayed or unnecessary. This paper proposes the Deep Multimodal Wound Assessment Tool (DM-WAT), a novel machine learning framework to support visiting nurses by recommending wound referral decisions from smartphone-captured wound images and associated clinical notes. DM-WAT extracts visual features from wound images using DeiT-Base-Distilled, a Vision Transformer (ViT) architecture. Distillation-based training facilitates representation learning and knowledge transfer from a larger teacher model to DeiT-Base, enabling robust performance on our small wound image dataset of 205 wound images. DM-WAT extracts text features from clinical notes using DeBERTa-base, which comprehends context by disentangling content and position information from clinical notes. Visual and text features are combined using an intermediate fusion approach. To overcome the challenges posed by a small and imbalanced dataset, DM-WAT integrates image and text augmentation along with transfer learning via pre-trained feature extractors to achieve high performance. In rigorous evaluation, DM-WAT achieved an accuracy of 77% <inline-formula> <tex-math>$\\pm ~3$ </tex-math></inline-formula>% and an F1 score of 70% <inline-formula> <tex-math>$\\pm ~2$ </tex-math></inline-formula>%, outperforming the prior state of the art and all baseline single-modality and multimodal approaches. Additionally, to interpret DM-WAT’s recommendations, the Score-CAM and Captum interpretation algorithms provided insights into the specific parts of the image and text inputs that the model focused on during decision-making.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"341-353"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11078373","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11078373/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic wounds affect 8.5 million Americans, especially the elderly and patients with diabetes. As regular care is critical for proper healing, many patients receive care in their homes from visiting nurses and caregivers with variable wound expertise. Problematic, non-healing wounds should be referred to experts in wound clinics to avoid adverse outcomes such as limb amputations. Unfortunately, due to the lack of wound expertise, referral decisions made in non-clinical settings can be erroneous, delayed or unnecessary. This paper proposes the Deep Multimodal Wound Assessment Tool (DM-WAT), a novel machine learning framework to support visiting nurses by recommending wound referral decisions from smartphone-captured wound images and associated clinical notes. DM-WAT extracts visual features from wound images using DeiT-Base-Distilled, a Vision Transformer (ViT) architecture. Distillation-based training facilitates representation learning and knowledge transfer from a larger teacher model to DeiT-Base, enabling robust performance on our small wound image dataset of 205 wound images. DM-WAT extracts text features from clinical notes using DeBERTa-base, which comprehends context by disentangling content and position information from clinical notes. Visual and text features are combined using an intermediate fusion approach. To overcome the challenges posed by a small and imbalanced dataset, DM-WAT integrates image and text augmentation along with transfer learning via pre-trained feature extractors to achieve high performance. In rigorous evaluation, DM-WAT achieved an accuracy of 77% $\pm ~3$ % and an F1 score of 70% $\pm ~2$ %, outperforming the prior state of the art and all baseline single-modality and multimodal approaches. Additionally, to interpret DM-WAT’s recommendations, the Score-CAM and Captum interpretation algorithms provided insights into the specific parts of the image and text inputs that the model focused on during decision-making.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.