Compliant Intramedullary Stems for Joint Reconstruction

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
John A. Mccullough;Brandon T. Peterson;Alexander M. Upfill-Brown;Thomas J. Hardin;Jonathan B. Hopkins;Nelson F. Soohoo;Tyler R. Clites
{"title":"Compliant Intramedullary Stems for Joint Reconstruction","authors":"John A. Mccullough;Brandon T. Peterson;Alexander M. Upfill-Brown;Thomas J. Hardin;Jonathan B. Hopkins;Nelson F. Soohoo;Tyler R. Clites","doi":"10.1109/JTEHM.2024.3365305","DOIUrl":null,"url":null,"abstract":"The longevity of current joint replacements is limited by aseptic loosening, which is the primary cause of non-infectious failure for hip, knee, and ankle arthroplasty. Aseptic loosening is typically caused either by osteolysis from particulate wear, or by high shear stresses at the bone-implant interface from over-constraint. Our objective was to demonstrate feasibility of a compliant intramedullary stem that eliminates over-constraint without generating particulate wear. The compliant stem is built around a compliant mechanism that permits rotation about a single axis. We first established several models to understand the relationship between mechanism geometry and implant performance under a given angular displacement and compressive load. We then used a neural network to identify a design space of geometries that would support an expected 100-year fatigue life inside the body. We additively manufactured one representative mechanism for each of three anatomic locations, and evaluated these prototypes on a KR-210 robot. The neural network predicts maximum stress and torsional stiffness with 2.69% and 4.08% error respectively, relative to finite element analysis data. We identified feasible design spaces for all three of the anatomic locations. Simulated peak stresses for the three stem prototypes were below the fatigue limit. Benchtop performance of all three prototypes was within design specifications. Our results demonstrate the feasibility of designing patient- and joint-specific compliant stems that address the root causes of aseptic loosening. Guided by these results, we expect the use of compliant intramedullary stems in joint reconstruction technology to increase implant lifetime.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"314-327"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10433175","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10433175/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The longevity of current joint replacements is limited by aseptic loosening, which is the primary cause of non-infectious failure for hip, knee, and ankle arthroplasty. Aseptic loosening is typically caused either by osteolysis from particulate wear, or by high shear stresses at the bone-implant interface from over-constraint. Our objective was to demonstrate feasibility of a compliant intramedullary stem that eliminates over-constraint without generating particulate wear. The compliant stem is built around a compliant mechanism that permits rotation about a single axis. We first established several models to understand the relationship between mechanism geometry and implant performance under a given angular displacement and compressive load. We then used a neural network to identify a design space of geometries that would support an expected 100-year fatigue life inside the body. We additively manufactured one representative mechanism for each of three anatomic locations, and evaluated these prototypes on a KR-210 robot. The neural network predicts maximum stress and torsional stiffness with 2.69% and 4.08% error respectively, relative to finite element analysis data. We identified feasible design spaces for all three of the anatomic locations. Simulated peak stresses for the three stem prototypes were below the fatigue limit. Benchtop performance of all three prototypes was within design specifications. Our results demonstrate the feasibility of designing patient- and joint-specific compliant stems that address the root causes of aseptic loosening. Guided by these results, we expect the use of compliant intramedullary stems in joint reconstruction technology to increase implant lifetime.
用于关节重建的顺应性髓内骨茎
无菌性松动是髋关节、膝关节和踝关节置换术非感染性失败的主要原因,它限制了目前关节置换术的使用寿命。无菌性松动通常是由微粒磨损造成的骨溶解或过度约束造成的骨-植入物界面的高剪切应力引起的。我们的目标是证明顺应性髓内骨干的可行性,这种骨干可以在不产生微粒磨损的情况下消除过度约束。这种顺应性髓内骨干是围绕一个顺应性机制建立的,该机制允许围绕单轴旋转。我们首先建立了几个模型,以了解在给定角位移和压缩载荷下机构几何形状与植入物性能之间的关系。然后,我们利用神经网络确定了一个几何设计空间,该空间可支持预期的体内 100 年疲劳寿命。我们为三个解剖位置各加成制造了一个具有代表性的机构,并在 KR-210 机器人上对这些原型进行了评估。与有限元分析数据相比,神经网络预测的最大应力和扭转刚度误差分别为 2.69% 和 4.08%。我们为所有三个解剖位置确定了可行的设计空间。三种茎干原型的模拟峰值应力均低于疲劳极限。所有三种原型的台式性能均符合设计规范。我们的研究结果表明,设计针对患者和关节的顺应性骨干是可行的,可以解决无菌性松动的根本原因。在这些结果的指导下,我们期望在关节重建技术中使用顺应性髓内干能延长植入物的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信