{"title":"基于小波的动态心动图运动伪影消除方法","authors":"James Skoric;Yannick D’Mello;David V. Plant","doi":"10.1109/JTEHM.2024.3368291","DOIUrl":null,"url":null,"abstract":"Wearable sensing has become a vital approach to cardiac health monitoring, and seismocardiography (SCG) is emerging as a promising technology in this field. However, the applicability of SCG is hindered by motion artifacts, including those encountered in practice of which the strongest source is walking. This holds back the translation of SCG to clinical settings. We therefore investigated techniques to enhance the quality of SCG signals in the presence of motion artifacts. To simulate ambulant recordings, we corrupted a clean SCG dataset with real-walking-vibrational noise. We decomposed the signal using several empirical-mode-decomposition methods and the maximum overlap discrete wavelet transform (MODWT). By combining MODWT, time-frequency masking, and nonnegative matrix factorization, we developed a novel algorithm which leveraged the vertical axis accelerometer to reduce walking vibrations in dorsoventral SCG. The accuracy and applicability of our method was verified using heart rate estimation. We used an interactive selection approach to improve estimation accuracy. The best decomposition method for reduction of motion artifact noise was the MODWT. Our algorithm improved heart rate estimation from 0.1 to 0.8 r-squared at −15 dB signal-to-noise ratio (SNR). Our method reduces motion artifacts in SCG signals up to a SNR of −19 dB without requiring any external assistance from electrocardiography (ECG). Such a standalone solution is directly applicable to the usage of SCG in daily life, as a content-rich replacement for other wearables in clinical settings, and other continuous monitoring scenarios. In applications with higher noise levels, ECG may be incorporated to further enhance SCG and extend its usable range. This work addresses the challenges posed by motion artifacts, enabling SCG to offer reliable cardiovascular insights in more difficult scenarios, and thereby facilitating wearable monitoring in daily life and the clinic.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"348-358"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10440609","citationCount":"0","resultStr":"{\"title\":\"A Wavelet-Based Approach for Motion Artifact Reduction in Ambulatory Seismocardiography\",\"authors\":\"James Skoric;Yannick D’Mello;David V. Plant\",\"doi\":\"10.1109/JTEHM.2024.3368291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable sensing has become a vital approach to cardiac health monitoring, and seismocardiography (SCG) is emerging as a promising technology in this field. However, the applicability of SCG is hindered by motion artifacts, including those encountered in practice of which the strongest source is walking. This holds back the translation of SCG to clinical settings. We therefore investigated techniques to enhance the quality of SCG signals in the presence of motion artifacts. To simulate ambulant recordings, we corrupted a clean SCG dataset with real-walking-vibrational noise. We decomposed the signal using several empirical-mode-decomposition methods and the maximum overlap discrete wavelet transform (MODWT). By combining MODWT, time-frequency masking, and nonnegative matrix factorization, we developed a novel algorithm which leveraged the vertical axis accelerometer to reduce walking vibrations in dorsoventral SCG. The accuracy and applicability of our method was verified using heart rate estimation. We used an interactive selection approach to improve estimation accuracy. The best decomposition method for reduction of motion artifact noise was the MODWT. Our algorithm improved heart rate estimation from 0.1 to 0.8 r-squared at −15 dB signal-to-noise ratio (SNR). Our method reduces motion artifacts in SCG signals up to a SNR of −19 dB without requiring any external assistance from electrocardiography (ECG). Such a standalone solution is directly applicable to the usage of SCG in daily life, as a content-rich replacement for other wearables in clinical settings, and other continuous monitoring scenarios. In applications with higher noise levels, ECG may be incorporated to further enhance SCG and extend its usable range. This work addresses the challenges posed by motion artifacts, enabling SCG to offer reliable cardiovascular insights in more difficult scenarios, and thereby facilitating wearable monitoring in daily life and the clinic.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"12 \",\"pages\":\"348-358\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10440609\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10440609/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10440609/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Wavelet-Based Approach for Motion Artifact Reduction in Ambulatory Seismocardiography
Wearable sensing has become a vital approach to cardiac health monitoring, and seismocardiography (SCG) is emerging as a promising technology in this field. However, the applicability of SCG is hindered by motion artifacts, including those encountered in practice of which the strongest source is walking. This holds back the translation of SCG to clinical settings. We therefore investigated techniques to enhance the quality of SCG signals in the presence of motion artifacts. To simulate ambulant recordings, we corrupted a clean SCG dataset with real-walking-vibrational noise. We decomposed the signal using several empirical-mode-decomposition methods and the maximum overlap discrete wavelet transform (MODWT). By combining MODWT, time-frequency masking, and nonnegative matrix factorization, we developed a novel algorithm which leveraged the vertical axis accelerometer to reduce walking vibrations in dorsoventral SCG. The accuracy and applicability of our method was verified using heart rate estimation. We used an interactive selection approach to improve estimation accuracy. The best decomposition method for reduction of motion artifact noise was the MODWT. Our algorithm improved heart rate estimation from 0.1 to 0.8 r-squared at −15 dB signal-to-noise ratio (SNR). Our method reduces motion artifacts in SCG signals up to a SNR of −19 dB without requiring any external assistance from electrocardiography (ECG). Such a standalone solution is directly applicable to the usage of SCG in daily life, as a content-rich replacement for other wearables in clinical settings, and other continuous monitoring scenarios. In applications with higher noise levels, ECG may be incorporated to further enhance SCG and extend its usable range. This work addresses the challenges posed by motion artifacts, enabling SCG to offer reliable cardiovascular insights in more difficult scenarios, and thereby facilitating wearable monitoring in daily life and the clinic.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.