Nano FuturesPub Date : 2024-02-12DOI: 10.1088/2399-1984/ad285b
Salvatore Cianci, E. Blundo, Marco Felici
{"title":"One (photon), two(-dimensional crystals), a lot (of potential): a quick snapshot of a rapidly evolving field","authors":"Salvatore Cianci, E. Blundo, Marco Felici","doi":"10.1088/2399-1984/ad285b","DOIUrl":"https://doi.org/10.1088/2399-1984/ad285b","url":null,"abstract":"\u0000 We present a concise overview of the state of affairs in the development of single-photon sources based on two-dimensional (2D) crystals, focusing in particular on transition-metal dichalcogenides and hexagonal boron nitride. We briefly discuss the current level of advancement (i) in our understanding of the microscopic origin of the quantum emitters (QEs) identified in these two material systems, and (ii) in the characterization of the optical properties of these emitters; then, we survey the main methods developed to enable the dynamic control of the QEs' emission energy. Finally, we summarize the main results stemming from the coupling of QEs embedded in 2D materials with photonic and plasmonic structures.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-10-16DOI: 10.1088/2399-1984/ad03b2
Xing Li, Bingcheng Li, Qunfeng Zhang, Xiaonian Li
{"title":"Preparation of Carbon dots-metal nanoparticles Nanocomposites and Their Application in Heterogeneous Catalysis","authors":"Xing Li, Bingcheng Li, Qunfeng Zhang, Xiaonian Li","doi":"10.1088/2399-1984/ad03b2","DOIUrl":"https://doi.org/10.1088/2399-1984/ad03b2","url":null,"abstract":"Abstract Since metal nanoparticles-carbon quantum dots nanocomposites combine the advantages of both carbon quantum dots and metal nanoparticles, they show unique properties and are applied in heterogeneous catalysis. In the nanocomposite catalysts, CODs can act as modifiers to modulate the electronic properties of the metals or produce synergy with the metals. Consequently, the nanocomposite catalysts have good catalytic performance. This paper summarizes the preparation methods of nanocomposite catalysts and focuses on their applications in heterogeneous catalysis. Various specific preparation methods are not only summarized as completely as possible but also are also classified at the macro logic level. The applications of the nanocomposite catalysts in heterogeneous catalysis include photocatalysis, sonocatalysis, electrocatalysis, and thermal catalysis. It also reveals how the nanocomposite catalysts produce excellent catalytic performances in various catalytic reactions. Finally, the existing problems and the direction of future efforts are proposed. It is hoped that this paper will provide a slight reference for the future research of metal nanoparticles-carbon quantum dots nanocomposite catalysts and their application in the field of catalysis.
a:Industrial Catalysis Institute of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Hangzhou, 310032, People’s Republic of China
","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136079965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-09-08DOI: 10.1088/2399-1984/acf822
Arya Rai̇, Simrandeep Kaur, S. Rawat, Inderbir Singh
{"title":"Herbal bioactive encapsulated nano-formulations for the treatment of gastric cancer: a concise review","authors":"Arya Rai̇, Simrandeep Kaur, S. Rawat, Inderbir Singh","doi":"10.1088/2399-1984/acf822","DOIUrl":"https://doi.org/10.1088/2399-1984/acf822","url":null,"abstract":"Gastric cancer is a prominent cause of death globally. The major risk factors responsible for its development include age, H. pylori infection, excessive salt intake, and lack of fruits and vegetables in the diet. It is diagnosed using ultrasound, CT scan, endoscopic biopsy, and by detection of certain biomarkers. The conventional therapies for treatment of gastric cancer include the use of radiations, surgical resection, and chemotherapy. However, there are certain major issues associated with these treatments, like high risk of tumour reoccurrence, drug resistance development, less bioavailability of the drug at target site, rapid drug metabolism and high systemic toxicity due to drug doses. All such limitations of conventional treatments can be overcome with the use of herbal bio-actives as they exhibit less toxicity to normal healthy cells and reduce the risk of tumour recurrence and resistance development. Nano-formulations are developed to aid in targeted drug delivery, and to enhance the solubility, stability, bioavailability, and therapeutic efficacy of phytoconstituents. With the emergence of nanomaterials, different imaging modalities have been integrated into one single platform, and combined therapies with synergetic effects against gastric cancer were established. Moreover, the development of theragnostic strategies with simultaneous diagnostic and therapeutic ability was boosted by multifunctional nanoparticles. The present review discusses about the gastric cancer including its mortality rate, secular trends, pathophysiology, etiology, risk factors, diagnosis, and different treatment approaches with major emphasis on herbal bioactives (quercetin, paclitaxel, resveratrol, curcumin and ginsenosides) and different herbal constituent encapsulated nano-formulations (such as nanoparticles, niosomes, liposomes, nano-emulsion, and micelles). Challenges and future prospects of herbal bioactive encapsulated nano-formulations for the treatment/management of gastric cancers has been included in the later part of the manuscript.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45892893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-08-15DOI: 10.1088/2399-1984/acf0a9
K. Saumya, Susmita Naskar, T. Mukhopadhyay
{"title":"‘Magic’ of twisted multi-layered graphene and 2D nano-heterostructures","authors":"K. Saumya, Susmita Naskar, T. Mukhopadhyay","doi":"10.1088/2399-1984/acf0a9","DOIUrl":"https://doi.org/10.1088/2399-1984/acf0a9","url":null,"abstract":"Two-dimensional materials with a single or few layers are exciting nano-scale materials that exhibit unprecedented multi-functional properties including optical, electronic, thermal, chemical and mechanical characteristics. A single layer of different 2D materials or a few layers of the same material may not always have the desired application-specific properties to an optimal level. In this context, a new trend has started gaining prominence lately to develop engineered nano-heterostructures by algorithmically stacking multiple layers of single or different 2D materials, wherein each layer could further have individual twisting angles. The enormous possibilities of forming heterostructures through combining a large number of 2D materials with different numbers, stacking sequences and twisting angles have expanded the scope of nano-scale design well beyond considering only a 2D material mono-layer with a specific set of given properties. Magic angle twisted bilayer graphene (BLG), a functional variant of van der Waals heterostructures, has created a buzz recently since it achieves unconventional superconductivity and Mott insulation at around 1.1∘ twist angle. These findings have ignited the interest of researchers to explore a whole new family of 2D heterostructures by introducing twists between layers to tune and enhance various multi-physical properties individually as well as their weighted compound goals. Here we aim to abridge outcomes of the relevant literature concerning twist-dependent physical properties of BLG and other multi-layered heterostructures, and subsequently highlight their broad-spectrum potential in critical engineering applications. The evolving trends and challenges have been critically analysed along with insightful perspectives on the potential direction of future research.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48877500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-07-21DOI: 10.1088/2399-1984/ace9a3
K. Ramya, K. Amreen, I. Pronin, Andrey A Karmanov, N. Yakushova, S. Goel
{"title":"Emerging trends in microfluidic-assisted nanomaterial synthesis for their high-resolution gas sensing applications","authors":"K. Ramya, K. Amreen, I. Pronin, Andrey A Karmanov, N. Yakushova, S. Goel","doi":"10.1088/2399-1984/ace9a3","DOIUrl":"https://doi.org/10.1088/2399-1984/ace9a3","url":null,"abstract":"Conventional methods of detecting hazardous gases and aerated microorganisms were judged unfeasible for use in a point of use environment. The use of a lightweight prototype and an easy fabrication provides significant advantages over conventional gas sensing systems. It would be ideal if scientists could develop relatively small, sensitive gas sensors that could detect trace amounts of biomarker gases and airborne pollutants. In the realm of sensors, microfluidics technology enables the analysis of a small quantity of samples by facilitating the use of a minimum amount of sensor materials. Moreover, the capacity to scrutinise a diminutive sample volume result in a sensor that exhibits prompt responsiveness. However, attaining selectivity towards the target analyte has been a major challenge. With this objective of obtaining specificity in gas sensing, this comprehensive study highlights recent breakthroughs in microfluidic device design and synthesis of sensing materials for selective gas and aerated pollutants. The present review focuses on brief explanation of a microfluidic device design, the substrate material, channel size, shape, deposition, and cleaning methods for synthesis of selective gas sensing materials based on noble metals, semiconductor oxide nanoparticles, and their composites. Further, the gas sensing application of these materials is also discussed in detail. This article is the first to provide an extensive overview of the substrate materials, design fabrication, deposition, and cleaning techniques, microfluidic synthesis of sensing materials for selective gas sensing, and the various detection approaches required for novel and efficient gas sensing analysis using recent microfluidic technology.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43177559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-07-06DOI: 10.1088/2399-1984/acde26
Sahar Dinparvar, E. Abamor, Sedanur Oztav, Tugba Gul Inci, Murat Ihlamur, Malahat Baghirova, D. Turgut-Balik, A. Allahverdiyev
{"title":"Evaluation of in vitro immunostimulatory and cytotoxic effects of recombinant survivin protein in combination with doxorubicin and breast cancer antigen-loaded polycaprolactone nanoparticles","authors":"Sahar Dinparvar, E. Abamor, Sedanur Oztav, Tugba Gul Inci, Murat Ihlamur, Malahat Baghirova, D. Turgut-Balik, A. Allahverdiyev","doi":"10.1088/2399-1984/acde26","DOIUrl":"https://doi.org/10.1088/2399-1984/acde26","url":null,"abstract":"In this study, the immunostimulatory and anticancer activities of the doxorubicin (DOX), MCF-7 and MDA-MB-231 breast cancer antigen-loaded polycaprolactone (PCL) nanoparticles (NPs) in combination with survivin recombinant protein (RP) and an alum adjuvant are evaluated in vitro on J774 macrophage, MCF-7 and MDA-MB-231 breast cancer cell lines. A double-emulsion solvent evaporation method was used for encapsulation of DOX and antigens into PCL NPs. The physicochemical characterization of NPs included size, morphology, zeta potential, release profiles and encapsulation efficiencies, analyzed using scanning electron microscopy, a zeta-sizer and UV–vis spectrometry. The cytotoxic and inhibitory effects of NPs were determined using a methyl thiazolyl tetrazolium assay. Immunostimulatory effects of the NPs were detected by Griess reaction and ELISA tests to determine nitric oxide and cytokine levels, respectively. According to the results, DOX and antigen-loaded PCL NPs ranged between 240 nm and 290 nm. Antigen and drug-loaded NPs appear less toxic over macrophage cells in comparison with non-capsulated free agents. In addition, considerable inhibitory effects of antigen and drug-loaded NPs were observed at non-toxic concentrations, such as 25 and 50 μg ml−1, on human mammary cancer cell lines (p⩽ 0.0001). The amount of nitrite released from macrophages that were treated with antigen and DOX-encapsulated PCL NPs, in combination with alum and survivin RP, after 96 h incubation was significantly higher than the control, especially at 50 and 100 μg ml−1, and triggered macrophages to produce high quantities of IL-4 and IL-12 cytokines in contrast to the control. As a result, DOX and antigen-loaded PCL NPs in combination with survivin and alum adjuvant revealed significant immunostimulatory and inhibiting influence on macrophage and breast cancer cells, respectively. The outcomes revealed that antigen and drug-loaded PCL NPs supplemented with survivin RP and an alum adjuvant created an effective platform for the development of nanotechnology-based immunotherapeutic tools to inhibit breast cancer cells. However, these outputs should be supported by further in vivo studies.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46604296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-07-04DOI: 10.1088/2399-1984/ace178
Karthick Harini, K. Girigoswami, P. Pallavi, Pemula Gowtham, Anbazhagan Thirumalai, Kamalakkannan Charulekha, A. Girigoswami
{"title":"MoS2 nanocomposites for biomolecular sensing, disease monitoring, and therapeutic applications","authors":"Karthick Harini, K. Girigoswami, P. Pallavi, Pemula Gowtham, Anbazhagan Thirumalai, Kamalakkannan Charulekha, A. Girigoswami","doi":"10.1088/2399-1984/ace178","DOIUrl":"https://doi.org/10.1088/2399-1984/ace178","url":null,"abstract":"The unique physicochemical properties of MoS2 nanocomposites have drawn escalation in attention for the diagnosis and therapy of cancer. Mostly the 2D forms of MoS2 find application in sensing, catalysis, and theranostics, where it was traditionally applied in lubrication and battery industries as electrodes or intercalating agents. As nanostructures, MoS2 has a very high surface-to-volume ratio, and that helps in the engineering of structures and surfaces to promote absorption of a wide range of therapeutics and biomolecules through covalent or non-covalent interaction. This surface engineering provides excellent colloidal stability to MoS2 and makes them ideal nanomedicines with higher selectivity, sensitivity, and biomarker sensing ability. Furthermore, MoS2 exhibits exceptionally well optical absorption of NIR radiation and photothermal conversion, which helps in the NIR-responsive release of payloads in photothermal and photodynamic therapy. There are several reports that the fabricated MoS2 nanomedicines can selectively counter the tumor microenvironment, which leads to the accumulation of therapeutics or imaging agents in the diseased tissues to improve the therapeutic effects decreasing the adverse effects on the healthy cells. An overview of the basic structure and properties of MoS2 is presented in this article, along with an elaborative description of its morphology. At the same time, an attempt was made in this review to summarize the latest developments in the MoS2 structure, surface engineering, and nanocomposite formulations for improving biocompatibility, bioavailability, biomolecular sensing, and theranostic applications.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47023231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-07-04DOI: 10.1088/2399-1984/ace40e
Yanfang Wang, Suman Ma, Linyu Hu, Z. Fan, Yuanjing Lin
{"title":"Wearable and printable devices for electrolytes sensing","authors":"Yanfang Wang, Suman Ma, Linyu Hu, Z. Fan, Yuanjing Lin","doi":"10.1088/2399-1984/ace40e","DOIUrl":"https://doi.org/10.1088/2399-1984/ace40e","url":null,"abstract":"With the development of biotechnology and the miniaturization of sensors, wearable devices have attracted extensive attention for real-time and non-invasive health monitoring at the molecular level. Among these, sensors for electrolytes analysis play an essential role in monitoring body physiological functions and metabolic activities. Herein, this review firstly summarizes the recent advances in electrolytes sensing via wearable devices, focusing on the most commonly adopted ion-selective electrodes, optical sensors and sensing platforms for effective body fluid collection and analysis. Innovative strategies based on nanomaterials engineering to achieve biosensing reliability, mechanical robustness as well as biocompatibility are also presented. Moreover, novel printable fabrication approaches to realize integrated wearable sensing systems with desirable compatibility and versatility are introduced. Finally, the challenges for practical applications and the perspectives on accurate and multi-functional sensing based on integrated wearable devices are discussed.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42147015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-06-01DOI: 10.1088/2399-1984/acddb2
E. Simsek, B. Aslan
{"title":"Computing strain-dependent energy transfer from quantum dots to 2D materials","authors":"E. Simsek, B. Aslan","doi":"10.1088/2399-1984/acddb2","DOIUrl":"https://doi.org/10.1088/2399-1984/acddb2","url":null,"abstract":"Near-field interaction between the monolayers of two-dimensional (2D) materials has been recently investigated. Another branch under investigation has been the interaction between 2D materials and zero-dimensional (0D) nanostructures including quantum dots (QDs) and metal nanoparticles. In this work, we take one more step to engineering the interaction between those systems. We probe the effect of mechanical strain on the non-radiative energy transfer (NRET) rate from a 0D material, ZnCdSe/ZnSe QD, to a 2D material, monolayer (1L) WS2. It is known that the mechanical strain causes large shifts to the exciton energies in 1L WS2. As a result, our calculations show that strain can tune the NRET rate by engineering the overlap between the emission spectrum of ZnCdSe/ZnSe QD and the exciton resonances of 1L WS2.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48531111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2023-06-01DOI: 10.1088/2399-1984/acddb3
A. Pamukcu, M. Karakaplan, Şen Karaman Didem
{"title":"Mesoporous silica shell in a core@shell nanocomposite design enables antibacterial action with multiple modes of action","authors":"A. Pamukcu, M. Karakaplan, Şen Karaman Didem","doi":"10.1088/2399-1984/acddb3","DOIUrl":"https://doi.org/10.1088/2399-1984/acddb3","url":null,"abstract":"Core@shell structured nanocomposites have received significant attention for their synergistic mode of antibacterial action. Identification of the accommodated unit’s function in the core@shell nanostructure is necessary in order to determine whether antibacterial synergism against bacterial cell growth that is provided within the same core@shell structure. Herein, a novel nanostructure(s) composed of a cerium oxide core and a porous silica shell (CeO2@pSiO2) accomodating curcumin and lectin was prepared, and the antibacterial synergism provided by the nanocomposite was identified. The resulting spherical-shaped CeO2@pSiO2 nanostructure allowed accommodation of curcumin loading (9 w/w%) and a lectin (concanavalin A) coating (15 w/w%). The antibacterial synergism was tested using a minimal inhibitory concentration assay against an Escherichia coli Gram-negative bacterial strain. Furthermore, the mechanisms of bacterial cell disruption induced by the curcumin-loaded and concanavalin A-coated CeO2@pSiO2 core@shell structure, namely the nanoantibiotic (nano-AB) and its design components, were identified. Our findings reveal that the mesoporous silica shell around the CeO2 core within the nano-AB design aids the accommodation of curcumin and concanavalin A and promotes destruction of bacterial cell motility and the permeability of the inner and outer bacterial cell membranes. Our findings strongly indicate the promising potential of a mesoporous silica shell around nanoparticles with a CeO2 core to provide synergistic antibacterial treatment and attack bacterial cells by different mechanisms of action.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42570305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}