{"title":"介孔二氧化硅外壳在core@shell纳米复合材料设计使抗菌作用与多种模式的作用","authors":"A. Pamukcu, M. Karakaplan, Şen Karaman Didem","doi":"10.1088/2399-1984/acddb3","DOIUrl":null,"url":null,"abstract":"Core@shell structured nanocomposites have received significant attention for their synergistic mode of antibacterial action. Identification of the accommodated unit’s function in the core@shell nanostructure is necessary in order to determine whether antibacterial synergism against bacterial cell growth that is provided within the same core@shell structure. Herein, a novel nanostructure(s) composed of a cerium oxide core and a porous silica shell (CeO2@pSiO2) accomodating curcumin and lectin was prepared, and the antibacterial synergism provided by the nanocomposite was identified. The resulting spherical-shaped CeO2@pSiO2 nanostructure allowed accommodation of curcumin loading (9 w/w%) and a lectin (concanavalin A) coating (15 w/w%). The antibacterial synergism was tested using a minimal inhibitory concentration assay against an Escherichia coli Gram-negative bacterial strain. Furthermore, the mechanisms of bacterial cell disruption induced by the curcumin-loaded and concanavalin A-coated CeO2@pSiO2 core@shell structure, namely the nanoantibiotic (nano-AB) and its design components, were identified. Our findings reveal that the mesoporous silica shell around the CeO2 core within the nano-AB design aids the accommodation of curcumin and concanavalin A and promotes destruction of bacterial cell motility and the permeability of the inner and outer bacterial cell membranes. Our findings strongly indicate the promising potential of a mesoporous silica shell around nanoparticles with a CeO2 core to provide synergistic antibacterial treatment and attack bacterial cells by different mechanisms of action.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoporous silica shell in a core@shell nanocomposite design enables antibacterial action with multiple modes of action\",\"authors\":\"A. Pamukcu, M. Karakaplan, Şen Karaman Didem\",\"doi\":\"10.1088/2399-1984/acddb3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Core@shell structured nanocomposites have received significant attention for their synergistic mode of antibacterial action. Identification of the accommodated unit’s function in the core@shell nanostructure is necessary in order to determine whether antibacterial synergism against bacterial cell growth that is provided within the same core@shell structure. Herein, a novel nanostructure(s) composed of a cerium oxide core and a porous silica shell (CeO2@pSiO2) accomodating curcumin and lectin was prepared, and the antibacterial synergism provided by the nanocomposite was identified. The resulting spherical-shaped CeO2@pSiO2 nanostructure allowed accommodation of curcumin loading (9 w/w%) and a lectin (concanavalin A) coating (15 w/w%). The antibacterial synergism was tested using a minimal inhibitory concentration assay against an Escherichia coli Gram-negative bacterial strain. Furthermore, the mechanisms of bacterial cell disruption induced by the curcumin-loaded and concanavalin A-coated CeO2@pSiO2 core@shell structure, namely the nanoantibiotic (nano-AB) and its design components, were identified. Our findings reveal that the mesoporous silica shell around the CeO2 core within the nano-AB design aids the accommodation of curcumin and concanavalin A and promotes destruction of bacterial cell motility and the permeability of the inner and outer bacterial cell membranes. Our findings strongly indicate the promising potential of a mesoporous silica shell around nanoparticles with a CeO2 core to provide synergistic antibacterial treatment and attack bacterial cells by different mechanisms of action.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/acddb3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/acddb3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mesoporous silica shell in a core@shell nanocomposite design enables antibacterial action with multiple modes of action
Core@shell structured nanocomposites have received significant attention for their synergistic mode of antibacterial action. Identification of the accommodated unit’s function in the core@shell nanostructure is necessary in order to determine whether antibacterial synergism against bacterial cell growth that is provided within the same core@shell structure. Herein, a novel nanostructure(s) composed of a cerium oxide core and a porous silica shell (CeO2@pSiO2) accomodating curcumin and lectin was prepared, and the antibacterial synergism provided by the nanocomposite was identified. The resulting spherical-shaped CeO2@pSiO2 nanostructure allowed accommodation of curcumin loading (9 w/w%) and a lectin (concanavalin A) coating (15 w/w%). The antibacterial synergism was tested using a minimal inhibitory concentration assay against an Escherichia coli Gram-negative bacterial strain. Furthermore, the mechanisms of bacterial cell disruption induced by the curcumin-loaded and concanavalin A-coated CeO2@pSiO2 core@shell structure, namely the nanoantibiotic (nano-AB) and its design components, were identified. Our findings reveal that the mesoporous silica shell around the CeO2 core within the nano-AB design aids the accommodation of curcumin and concanavalin A and promotes destruction of bacterial cell motility and the permeability of the inner and outer bacterial cell membranes. Our findings strongly indicate the promising potential of a mesoporous silica shell around nanoparticles with a CeO2 core to provide synergistic antibacterial treatment and attack bacterial cells by different mechanisms of action.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.