Chem Catalysis最新文献

筛选
英文 中文
Mutual self-regulation of d electrons of single atoms and adjacent nanoparticles for acetaldehyde manufacture 制造乙醛时单个原子和相邻纳米粒子 d 电子的相互自我调节
IF 9.4
Chem Catalysis Pub Date : 2024-09-11 DOI: 10.1016/j.checat.2024.101108
Bolin Wang, Yuxue Yue, Fangmin Zuo, Saisai Wang, Zilong Zhang, Yuteng Zhang, Meijun Liu, Haifeng Zhang
{"title":"Mutual self-regulation of d electrons of single atoms and adjacent nanoparticles for acetaldehyde manufacture","authors":"Bolin Wang, Yuxue Yue, Fangmin Zuo, Saisai Wang, Zilong Zhang, Yuteng Zhang, Meijun Liu, Haifeng Zhang","doi":"10.1016/j.checat.2024.101108","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101108","url":null,"abstract":"<p>Metal-support interactions in catalysis impose fundamental limitations on maximum activity. Here, we show that the constraint relationship of local electronic and geometric structures of carbon-supported palladium (Pd) catalysts can be broken through the synergy between the Pd-Pd and the Pd-B coupling interaction, producing a class of densely populated entities with unique negatively charged properties. A volcano-shaped curve that depicts the relationship between Pd Bader charge and neighboring atomic distance is established, thereby optimizing catalytic performance. Acetaldehyde manufacture via acetylene hydration is used as our study case. Outstanding performance can be triggered over the densely populated Pd single-atom and nanoparticle co-catalytic sites compared with individual Pd sites. The effect is attributed to the negative charge and high-density effect of Pd-BN<sub>3</sub> sites, which easily adapt their structures to binding C<sub>2</sub>H<sub>2</sub> and H<sub>2</sub>O and varying reaction routes. This approach provides practical insights for the design of Pd-based catalysts comprising well-defined electronic and geometric structures.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward an informative comparison of heterogeneous, synthetic, and biological electrocatalysis in energy conversion 对能源转换中的异质、合成和生物电催化进行信息比较
IF 9.4
Chem Catalysis Pub Date : 2024-09-06 DOI: 10.1016/j.checat.2024.101098
Lars J.C. Jeuken, Dennis G.H. Hetterscheid, Marc T.M. Koper, Carla Casadevall, Christophe Léger, Antoni Llobet, Ross D. Milton, Ryuhei Nakamura, Kristina Tschulik
{"title":"Toward an informative comparison of heterogeneous, synthetic, and biological electrocatalysis in energy conversion","authors":"Lars J.C. Jeuken, Dennis G.H. Hetterscheid, Marc T.M. Koper, Carla Casadevall, Christophe Léger, Antoni Llobet, Ross D. Milton, Ryuhei Nakamura, Kristina Tschulik","doi":"10.1016/j.checat.2024.101098","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101098","url":null,"abstract":"<p>An urgently needed transition toward a sustainable and renewable energy landscape compels an increasing role for electrocatalysis. Distinct classes of electrocatalysts have each shown important benefits in energy conversion and the activation of small molecules such as CO<sub>2</sub>, H<sub>2</sub>O, O<sub>2</sub>, and H<sub>2</sub>: synthetic and biological molecular electrocatalysts and heterogeneous and reticular material electrocatalysts. This perspective seeks to foster knowledge exchange between the scientific communities by comparing these different electrocatalytic systems. The different subdisciplines employ divergent nomenclature, analytical approaches, and definitions of catalytic activity, even in cases of substantial overlap in chemical principles. We propose a set of conditions that must be met to ensure an unbiased comparison. Through sustained efforts to share best practices and harmonize approaches, we anticipate enhanced collaboration among subdisciplines, thereby facilitating innovative thinking and advancing the field of electrocatalysis toward its full potential in contributing to a sustainable and renewable energy future.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Norrish-Yang-type cyclopropanation via functional group migration with photosensitizer at ppb loading 通过官能团迁移与光敏剂在 ppb 负荷下发生 Norrish-Yang 型环丙烷化反应
IF 9.4
Chem Catalysis Pub Date : 2024-09-06 DOI: 10.1016/j.checat.2024.101099
Yingru Xu, Jianjian Huang, Tengfei Pang, Guojiao Wu, Fangrui Zhong
{"title":"Norrish-Yang-type cyclopropanation via functional group migration with photosensitizer at ppb loading","authors":"Yingru Xu, Jianjian Huang, Tengfei Pang, Guojiao Wu, Fangrui Zhong","doi":"10.1016/j.checat.2024.101099","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101099","url":null,"abstract":"<p>The classic Norrish-Yang cyclization of ketones and their alkene counterparts is a well-known photochemical rearrangement strategy utilized for building cyclobutanes through hydrogen atom transfer. Herein, a noncanonical Norrish-Yang-type rearrangement involving the migration of functional groups, such as cyano and aryl, is established through energy transfer catalysis, facilitating facile assembly of three-membered cyclopropanes. With a focus on reactions translocating a cyano group, this protocol showcases a broad substrate scope (58 entries), operates under mild reaction conditions, and requires an extremely low catalyst loading (100 ppb, 12 h, 97% yield). Impressively, a total turnover number (TTN) of 1.15 × 10<sup>7</sup> was recorded. Mechanistic experiments uncovered a unique fluorescence enhancement phenomenon of photocatalysts, characterized by a linear Stern-Volmer plot with an unusual negative slope. The present Norrish-Yang-type cyclization significantly expands the synthetic repertoire of photochemical rearrangement for preparing distinct ring frameworks.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyolefin melt-phase effects on alkane hydrogenolysis over Pt catalysts 聚烯烃熔相对铂催化剂上烷烃氢解的影响
IF 9.4
Chem Catalysis Pub Date : 2024-09-05 DOI: 10.1016/j.checat.2024.101093
Mehdi Zare, Dia Sahsah, Olajide H. Bamidele, Andreas Heyden
{"title":"Polyolefin melt-phase effects on alkane hydrogenolysis over Pt catalysts","authors":"Mehdi Zare, Dia Sahsah, Olajide H. Bamidele, Andreas Heyden","doi":"10.1016/j.checat.2024.101093","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101093","url":null,"abstract":"&lt;p&gt;Supported transition metal-catalyzed chemical upcycling of polyolefins by hydrogenolysis typically occurs in a polymer melt phase at elevated temperatures (T &gt; 200°C). Currently, the impact of the melt phase on the catalytic activity and selectivity of the transition metal is largely unknown. Here, we use a hybrid quantum mechanical/molecular mechanical (QM/MM) approach to investigate the melt-phase effects on the adsorption free energy (&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;Δ&lt;/mo&gt;&lt;mo is=\"true\"&gt;Δ&lt;/mo&gt;&lt;mi is=\"true\"&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mi is=\"true\"&gt;o&lt;/mi&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;mi is=\"true\"&gt;b&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;t&lt;/mi&gt;&lt;mi is=\"true\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;g&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mo is=\"true\" stretchy=\"true\"&gt;→&lt;/mo&gt;&lt;mi is=\"true\"&gt;l&lt;/mi&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;mi is=\"true\"&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;Δ&lt;/mo&gt;&lt;mo is=\"true\"&gt;Δ&lt;/mo&gt;&lt;mi is=\"true\"&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mi is=\"true\"&gt;o&lt;/mi&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;mi is=\"true\"&gt;b&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;t&lt;/mi&gt;&lt;mi is=\"true\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;g&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mo stretchy=\"true\" is=\"true\"&gt;→&lt;/mo&gt;&lt;mi is=\"true\"&gt;l&lt;/mi&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;mi is=\"true\"&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;) of atomic hydrogen, 12 hydrocarbon molecules, and 4 transition states in the hydrogenolysis mechanism of butane on a Pt(111) catalyst surface at 573 K in the presence of a polyethylene surrogate melt consisting of C&lt;sub&gt;36&lt;/sub&gt;H&lt;sub&gt;74&lt;/sub&gt; chains. The smallest and largest endergonic melt phase effects, &lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;Δ&lt;/mo&gt;&lt;mo is=\"true\"&gt;Δ&lt;/mo&gt;&lt;mi is=\"true\"&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mi is=\"true\"&gt;o&lt;/mi&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;mi is=\"true\"&gt;b&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;t&lt;/mi&gt;&lt;mi is=\"true\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;g&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mo is=\"true\" stretchy=\"true\"&gt;→&lt;/mo&gt;&lt;mi is=\"true\"&gt;l&lt;/mi&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;mi is=\"true\"&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;Δ&lt;/mo&gt;&lt;mo is=\"true\"&gt;Δ&lt;/mo&gt;&lt;mi is=\"true\"&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mi is=\"true\"&gt;o&lt;/mi&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;mi is=\"true\"&gt;b&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;t&lt;/mi&gt;&lt;mi is=\"true\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;g&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mo stretchy=\"true\" is=\"true\"&gt;→&lt;/mo&gt;&lt;mi is=\"true\"&gt;l&lt;/mi&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;mi is=\"true\"&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;, bel","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen spillover accelerates catalytic hydrolysis ring opening of furans to polyols and alkanes 氢溢出可加速呋喃催化水解开环生成多元醇和烷烃
IF 9.4
Chem Catalysis Pub Date : 2024-09-05 DOI: 10.1016/j.checat.2024.101097
Xiang Li, Likang Zhang, Jun Wang, Zheling Zeng, Ji-Jun Zou, Shuguang Deng, Yiyang Li, Qiang Deng, Shik Chi Edman Tsang
{"title":"Hydrogen spillover accelerates catalytic hydrolysis ring opening of furans to polyols and alkanes","authors":"Xiang Li, Likang Zhang, Jun Wang, Zheling Zeng, Ji-Jun Zou, Shuguang Deng, Yiyang Li, Qiang Deng, Shik Chi Edman Tsang","doi":"10.1016/j.checat.2024.101097","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101097","url":null,"abstract":"<p>Low-temperature specific ring opening of furans to polyols and alkanes could be crucial for synthesizing bioderived polyols and high-performance fuel. Here, we report a new route for controllable semi-hydrogenation of furans to dihydrofurans and hydrolysis ring opening to polyols using surface-oxidized, metal phosphide (CoP-O)-supported, noble-metal nanoparticle catalysts at 150°C. The formed polyols can be widely used as building blocks for polyester, polyurethane, and polyether manufacturing. In addition, alkanes can be generated in high yield through a one-pot reaction by integrating the ring-opening and subsequent dehydration processes after introducing acidic zeolite. The controlled semi-hydrogenation hydrolysis route can be ascribed to a concerted but controlled hydrogenation-acid catalysis via hydrogen spillover from Pt nanoparticles to the CoP-O surface. This system shows its specific ring-opening strategy for various furans, which offers selective synthesis of polyols and alkanes.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EITLEM-Kinetics: A deep-learning framework for kinetic parameter prediction of mutant enzymes EITLEM-Kinetics:突变酶动力学参数预测的深度学习框架
IF 9.4
Chem Catalysis Pub Date : 2024-09-05 DOI: 10.1016/j.checat.2024.101094
Xiaowei Shen, Ziheng Cui, Jianyu Long, Shiding Zhang, Biqiang Chen, Tianwei Tan
{"title":"EITLEM-Kinetics: A deep-learning framework for kinetic parameter prediction of mutant enzymes","authors":"Xiaowei Shen, Ziheng Cui, Jianyu Long, Shiding Zhang, Biqiang Chen, Tianwei Tan","doi":"10.1016/j.checat.2024.101094","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101094","url":null,"abstract":"<p>The core issue in implementing <em>in silico</em> enzyme screening lies in accurately evaluating the merits of mutants. The best solution to this problem would undoubtedly be the precise prediction of kinetic parameters for mutant enzymes to directly assess the catalytic efficiency and activity of enzymes. Previously developed models of this type are mostly limited to predictions for wild-type enzymes and tend to exhibit poorer generalization capabilities. Here, a novel deep-learning model framework and an ensemble iterative transfer learning strategy for enzyme mutant kinetics parameter (<em>k</em><sub><em>cat</em></sub>, <em>K</em><sub><em>m</em></sub>, and <em>KK</em><sub><em>m</em></sub>) prediction (EITLEM-Kinetics) were developed. This approach is designed to overcome the limitations imposed by sparse training samples on the model’s predictive performance and accurately predict the kinetic parameters of various mutants. This development is set to provide significant assistance in future endeavors to construct virtual screening methods aimed at enhancing enzyme activity and offer innovative solutions for researchers grappling with similar challenges.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photothermal catalytic CO2 hydrogenation to methanol on Au/In2O3 nanowires 金/In2O3 纳米线光热催化二氧化碳加氢制甲醇
IF 9.4
Chem Catalysis Pub Date : 2024-09-04 DOI: 10.1016/j.checat.2024.101095
Letian Wang, Defu Yao, Chenchen Zhang, Yuzhen Chen, Lilac Amirav, Ziyi Zhong
{"title":"Photothermal catalytic CO2 hydrogenation to methanol on Au/In2O3 nanowires","authors":"Letian Wang, Defu Yao, Chenchen Zhang, Yuzhen Chen, Lilac Amirav, Ziyi Zhong","doi":"10.1016/j.checat.2024.101095","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101095","url":null,"abstract":"<p>Converting CO<sub>2</sub> into energy-rich fuels and high-value chemicals using solar energy is one of the sustainable solutions to mitigate reliance on fossil fuels, yet attaining the required conversion efficiency and selectivity to products such as methanol remains challenging. Here, we present In<sub>2</sub>O<sub>3</sub> nanowires decorated with plasmonic Au nanoparticles with improved activity for photothermal CO<sub>2</sub> hydrogenation to methanol. Under light irradiation, the localized surface plasmon resonance induced by the Au nanoparticles alleviates the thermodynamic constraints of methanol synthesis. This results in a significant increase in methanol production rate (320 μmol·g<sup>−1</sup>·h<sup>−1</sup>) alongside meaningful improvement in methanol selectivity compared with the purely thermal catalytic process. This work provides insights into the benefits of harnessing plasmonic nanoparticles to improve upon thermocatalysis via light utilization.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defect engineering for surface reconstruction of metal oxide catalysts during OER 用于 OER 期间金属氧化物催化剂表面重构的缺陷工程学
IF 9.4
Chem Catalysis Pub Date : 2024-09-03 DOI: 10.1016/j.checat.2024.101091
Jingxuan Zheng, Zhao Wang
{"title":"Defect engineering for surface reconstruction of metal oxide catalysts during OER","authors":"Jingxuan Zheng, Zhao Wang","doi":"10.1016/j.checat.2024.101091","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101091","url":null,"abstract":"<p>The development of electrochemical processes, such as water electrolysis for hydrogen production and rechargeable metal-air batteries, offers promising solutions to the energy crisis and environmental pollution. However, challenges like sluggish oxygen evolution reaction (OER) kinetics, high costs of precious metal catalysts, and scarce active sites in transition metal oxides hinder large-scale commercial applications. Defect engineering has emerged as a promising strategy to optimize transition metal oxides by improving their electronic structure, conductivity, and active site availability. Early research focused on static thermodynamic parameters, such as impedance, overpotential, and band gap, neglecting dynamic factors like catalyst surface restructuring and mechanism transformation during reactions. This perspective highlights the intrinsic connection between defect structures, catalyst surface reconstruction, and reaction mechanisms. It also discusses the need for advanced experimental and theoretical computational studies to better understand the surface evolution of catalysts during OERs.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A metadynamics study of water oxidation reactions at (001)-WO3/liquid-water interface (001)-WO3/ 水-液界面水氧化反应的元动力学研究
IF 9.4
Chem Catalysis Pub Date : 2024-08-29 DOI: 10.1016/j.checat.2024.101085
Rangsiman Ketkaew, Fabrizio Creazzo, Kevin Sivula, Sandra Luber
{"title":"A metadynamics study of water oxidation reactions at (001)-WO3/liquid-water interface","authors":"Rangsiman Ketkaew, Fabrizio Creazzo, Kevin Sivula, Sandra Luber","doi":"10.1016/j.checat.2024.101085","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101085","url":null,"abstract":"<p>A metadynamics method was used to calculate the free energy surfaces (FESs) of the oxygen evolution reaction (OER). Metadynamics simulation suggests that the oxygen–oxygen (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.351ex;\" viewbox=\"0 -796.9 2779.9 947.9\" width=\"6.457ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(1000,0)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(2001,0)\"><use xlink:href=\"#MJMAIN-4F\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mo is=\"true\">−</mo><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mo is=\"true\">−</mo><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow></math></script></span>) bond formation induced by oxidative reactant species and oxygen atoms on the surface is the rate-determining step. Not only bond distances but also extended social permutation invariant (xSPRINT) coordinates and deep autoencoder neural network (DAENN) are used as collective variables (CVs) in metadynamics calculations to characterize the FESs of the studied reactions. The FES calculations using xSPRINT and DAENN CVs show that the formation of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msup is=\"true\"&gt;&lt;mtext is=\"true\"&gt;OH&lt;/mtext&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 1982.9 947.9\" width=\"4.605ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1529,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msup is=\"true\"><mtext is=\"true\">O","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A solar cell with an ultra-reactive confined microinterface for high-flux water purification 用于高通量水净化的具有超活性封闭微界面的太阳能电池
IF 9.4
Chem Catalysis Pub Date : 2024-08-29 DOI: 10.1016/j.checat.2024.101084
Jun Zhang, Songying Qu, Lin Lin, Ruiquan Yu, Wutong Chen, Xiaoyan Li
{"title":"A solar cell with an ultra-reactive confined microinterface for high-flux water purification","authors":"Jun Zhang, Songying Qu, Lin Lin, Ruiquan Yu, Wutong Chen, Xiaoyan Li","doi":"10.1016/j.checat.2024.101084","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101084","url":null,"abstract":"<p>Advanced oxidation processes represent effective approaches toward water purification, but they are often energy and chemical intensive. Here, we show a solar cell with a highly reactive microinterface for high-flux wastewater treatment with requirements for only water, oxygen, and sunlight. Experiments demonstrate that hydrogen peroxide is produced in a porous cathode via two-electron oxygen reduction and then flows to a porous photoanode surface, where it is instantly activated to hydroxyl radicals (⋅OH) by light and integrated with indigenous ⋅OH generated via one-electron water oxidation. Accordingly, a microscale region (∼150 μm for thickness) with high-density ⋅OH (∼2.5 mM) is successfully constructed but remains spatially constrained on the photoanode surface. Refractory pollutants (such as norfloxacin) pass through this microinterface successively and are degraded rapidly (&gt;99% in ∼0.6-s retention time) due to violent collision between ⋅OH and targets, even after 360 h of long-term operation. Our findings highlight an innovative catalytic platform design scheme for efficient water purification.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信